How to scout for peach twig borer in fruit orchards

To scout fruit orchards for the peach twig borer, you will need to inspect the trees for signs of infestation. The peach twig borer is a small moth that lays its eggs on the branches of apricot, almond, cherry, nectarine, plum, pear, and peach trees. When the eggs hatch, the larvae burrow into the twigs and branches, causing them to die.

To scout for the pest, look for dead or dying twigs or branches on the trees. The larvae of the peach twig borer feed on the sap in the twigs and branches, causing them to wilt and die. If you find any dead or dying twigs, carefully inspect them for the presence of the peach twig borer.

When inspecting the twigs and branches, look for the small, black-headed white larvae of the peach twig borer. These larvae are about 1/4 inch long, and have a distinctive wrinkled appearance. They may be found inside the twigs and branches. As the larvae mature, they change their color to brown.

If you find the peach twig borer in your orchard, you will need to take action to control the infestation. There are several methods for controlling the peach twig borer, including the use of chemical pesticides, cultural controls, and biological controls.

Peach twig borer. Courtesy of Ilia Ustyantsev
Peach twig borer. Courtesy of Ilia Ustyantsev

When should I start scouting for the peach twig borer?

The best time to start scouting for the peach twig borer depends on a number of factors, including the climate and location of the orchard, and the variety and type of trees being grown.

In general, it is best to start scouting for the pest as soon as the trees start to bud in the spring. This is when the adult moths begin to emerge from their overwintering sites and lay their eggs on the branches of the trees. By starting to scout early in the season, you can identify any infestations early and take action to control them before the larvae cause significant damage to the trees.

You should continue to scout for the peach twig borer throughout the growing season, as the moths can lay multiple generations of eggs throughout the summer. Monitoring the trees regularly and taking action to control any infestations that are found can help to prevent significant damage to the orchard.

Using traps to monitor the peach twig borer

There are several types of traps that can be used to catch adult peach twig borers. Some of the most effective include pheromone traps, which use a chemical attractant to lure the moths into the trap, and sticky traps, which use a sticky substance to catch the moths as they fly by.

Pheromone traps are specifically designed to attract the peach twig borer, and they can be an effective way to monitor the population of the moths in your orchard. These traps typically consist of a small container or bag that is filled with a synthetic version of the moth’s pheromone, which is a chemical that the moths use to communicate with each other. When the moths are attracted to the pheromone, they fly into the trap and become stuck.

Sticky traps are another type of trap that can be used to catch adult peach twig borers. These traps consist of a sticky substance, such as a glue-like material, that is applied to a surface, such as a card or strip of paper. When the moths fly by the sticky trap, they become stuck to the surface. Sticky traps can be placed in the orchard to monitor the population of the moths and help to identify any infestations that may be present.

Peach twig borer’s growing degree days model

A growing degree days model is a tool that can be used to predict the development of insects and plants based on temperature. Growing degree days are a measure of heat accumulation over time and can be used to predict when certain events, such as the emergence of insect pests or the flowering of plants, will occur.

At the beginning of the spring, Install pheromone traps and check them weekly. Once the peach twig borer moth was captured, trigger the biofix, and the model would predict when the moth is likely to lay its eggs and when the larvae are likely to emerge. The model will keep you informed regarding the emergence of future generations. This information can help you to plan your pest control efforts and monitor the orchard for signs of infestation.

Monitoring growing degree days helps eliminate the guesswork in determining the time required for control measures. Download Agrio today and make it your growing degree days app. We look forward to seeing you leverage this technology for intelligent and effective pest management in your field. 

In the meantime, as always, we wish you an abundant harvest.


How to scout for aphids in corn fields

Aphids cause substantial damage while they are hidden within the whorl. If aphids are already visible on the plant, significant damage has already occurred. Therefore, it is important to start scout for aphids three weeks prior to tasseling. Randomly select a plant every 40 meters. Pull the whorl upward and out of the plant. Slowly unroll each whorl, and look for the presence of the insects. You can use our crop stage modeling to plan your scouting activities. We will notify you three weeks before tasseling and remind you to start scouting for aphids.

Tasseling cannot be predicted accurately based on calendarial days. We use weather models to provide a more precise prediction.
Tasseling cannot be predicted accurately based on calendarial days. We use weather models to provide a more precise prediction.

Corn leaf aphids’ growing degree days model

The life cycle of this pest can be predicted by using weather-based models. These models predict the optimal time to apply pesticide treatments. Once you register a field with a host plant in Agrio, the model automatically starts to run and instructs you in each milestone.

This model allows you to time the appearance of future insect pest generations. When insects are observed on plants, set the biofix date.

The model will track the development of the insects based on weather information. We use hyper-local weather data streamed into our servers once you define your field on the map.


Monitoring growing degree days helps eliminate the guesswork in determining the time required for control measures. Download Agrio today and make it your growing degree days app. We look forward to seeing you leverage this technology for intelligent and effective pest management in your field. 

In the meantime, as always, we wish you an abundant harvest.


How to scout for colorado potato beetle in potato fields

The Colorado potato beetle is a pest that can destroy potato, eggplant, and pepper crops. If it is not controlled, the beetle will reproduce rapidly and cause damage to the plants. The life cycle of the potato beetle can be predicted by using a weather-based model. It is essential to know the vulnerable period of the pest to determine when it is time to spray. This can help in controlling the pest population and reducing pesticide use.

Colorado potato beetle’s growing degree days model

The life cycle of this pest can be predicted by using weather-based models. This model predicts the optimal time to apply pesticide treatments.

Scouters need to check plants frequently right after plants emerge. Look for egg masses on the underside of the leaves. Set the biofix when eggs were found.

Female adults produce hundreds of eggs each year. The eggs are usually bright yellow to orange and typically found in clusters of ten to thirty on the underside of leaves. The model estimates when frequent scouting needs to be started to find signs of the eggs’ presence. Growers are notified and asked to confirm the eggs’ presence to start the life-cycle tracking.

The larvae should hatch from the eggs in 4-9 days, depending upon the temperature of the air. After this, they will molt three times before they pupate. These immature phases are called instars, and there are a total of 4. Biological treatment is effective against the first-stage larvae, and chemical spraying should be timed to the emergence of later stages. The number of pest generations in one season is also weather-dependent, and the model will estimate it for you, too.



Monitoring GDD helps eliminate the guesswork in determining the time required for control measures. Download Agrio today and make it your growing degree days app. We look forward to seeing you leverage this technology for intelligent and effective pest management in your field. 

In the meantime, as always, we wish you an abundant harvest.


Phytotoxicity causes and how to minimize the risk

Phytotoxicity occurs when a substance causes a toxic effect on plants. Phytotoxicity can occur when chemicals are applied, such as in foliar spraying and irrigation systems, to protect plants from diseases, pests, and other hazards. Additionally, phytotoxicity can occur following applications of fertilizers or growth regulators. There are no control measures; therefore, the focus should be on prevention.

Symptoms of phytotoxicity

  • Burn and necrosis.
  • Chlorosis.
  • Distortion, such as cupping or twisting (might be confused with a viral disease).
  • Stunting and abnormal growth (root damage or poor germination).
Phytotoxicity symptoms on basil leaves
Phytotoxicity symptoms on basil leaves
Phytotoxicity symptoms on cucumber leaf
Phytotoxicity symptoms on cucumber leaf
Phytotoxicity burn and distortion symptoms on basil leaves
Phytotoxicity burn and distortion symptoms on basil leaves

How to differentiate phytotoxicity from other damages

Symptoms of phytotoxicity can be confused with damages caused by plant pathogenic organisms or genetic disorders. Look for the following patterns to identify damage due to chemicals:

  • Leaf damage patterns show sharp edges with no discoloration gradient.
  • Plants very close to the sprayer show more damage than plants further away from the sprayer.
  • Symptoms show up fast in a wide area (1-7 days after application), and there is no further spread after the initial show-up.
  • New growth will appear healthy.

If there is a doubt, upload images of the affected plant to the Agrio app, and our artificial intelligence will help you with the identification.

Phytotoxicity causes

Environmental conditions

We discussed in much detail the environmental conditions that increase the risk of phytotoxicity in another blog post. In high temperatures (or water-stressed plants), low and high humidity are among several weather factors pesticides should be avoided. We refer the reader to the blog post to read how Agrio can help you time pesticide applications to minimize injury risk.

Agrio can help you time pesticide applications to minimize phytotoxicity risk.
Agrio can help you time pesticide applications to minimize phytotoxicity risk.

Growth stage of plants

Seedlings, flowering and fast-growing are more sensitive. Time the pesticide applications accordingly. This is especially important when herbicides are applied.

Chemicals applied improperly

If this is the first time that you are using a new pesticide, you should refer to the label of the product to familiarize yourself with the instructions. Check the label of the chemical and make sure the crop being treated is listed. Certain plants are sensitive to certain chemicals, so be careful what you use.

Mixing incompatible chemicals should also be avoided, and the product label provides information about that. Other common causes that we encounter are the application of sulfur and oils in close time proximity (less than a one-month window) and high dosage applications. Sulfur can stay on plants for a long time, and oils interact with it, forming phytotoxic compounds.

Note that high dosage can be in one application or an accumulation of several sequential applications. Apply the chemical thoroughly and evenly to avoid high dosages in some patches.

When testing a new pesticide for the first time, it is advised to apply it on a few plants every few days to get a sense of the amount of pesticide that can cause damage to the plants.

Pay attention to the formulation. Dust and wettable powders are less harmful options than emulsifiable concentrates. Emulsifiers can react with plant tissue and cause unwanted damage. Adjuvants such as spreaders, stickers, and wetting agents can increase the risk of an injury as well.

We recommend devoting separate sprayers to herbicides. Rinse the spraying tanks between applications and calibrate your spraying equipment once a year.

Drifts from the target crop to a sensitive crop

If you practice intercropping or growing different crops in proximity, you should pay attention to drift and the non-target crop sensitivity to the applied pesticide. Examine the field drainage routes and avoid applying pesticides when there is a risk of run-off.

Avoid pesticide spraying on windy days
Avoid pesticide spraying on windy days

Residues accumulate in the soil as a cause of phytotoxicity

Repeated applications can result in the accumulation of active ingredients to a toxic level. You should refer to the product label and follow the annual rate restrictions.

If you practice crop rotation (as you should!), you need to plan the next planted crop according to the risk of residues of pesticides and herbicides in the soil. Field crops that are produced after the harvest of a pesticide-treated primary crop might be affected by soil residues. Refer to the label and check the annual application rate limit to see if the crop to be planted next can be in danger.


Plants are subject to a variety of injuries, and many of these injuries are caused by human beings. The most common human-caused injury is the use of pesticides and herbicides, which can be detrimental to plants in many ways. By following the product label instructions and implementing good practices in the farm and garden, growers can avoid such damage.


Why ideal soil pH increases yield and how to achieve it

As in many problems growers encounter, deviations from ideal soil pH should be tackled early to prevent yield loss. Ideally, growers should adjust the soil pH before planting as adjustments when plants in the soil are slower and put the plants at risk.

What is pH

Soil pH is a measure of the concentration of hydrogen ions in the soil. It is measured on a scale from 0 to 14, with 7 being neutral. When the pH is below 7, the medium is acidic, while above 7 is called alkaline.

How does the soil pH impact plants and what is the ideal soil pH

The pH value has a considerable effect on which nutrients plants can extract from the soil. Chemical reactions in the soil might tie nutrients up when the pH is not in the desirable range. It is common, for example, to see symptoms of chlorosis in new foliage even when fertilizers are provided regularly. Many times the reason is a high pH that makes the micro-elements less available to plants. At low pH, the leaching of magnesium and potassium increases, and their availability in the top layer of the soil decrease.

A tomato plant shows symptoms of iron deficiency. Soil ph for tomatoes should be in the range of 6.2-6.8 for optimal nutrient uptake.
A tomato plant shows symptoms of iron deficiency. Soil ph for tomatoes should be in the range of 6.2-6.8 for optimal nutrient uptake.

The most accessible form of zinc, manganese, and copper to plants require soil with a pH level between 5.5-6.5, although they can still be utilized at a moderate rate in a wider range of 4.5-7.5.

Iron becomes moderately available when the pH is below 7.5 and is highly available below 6.5. Other nutrients become less available when the pH is very low. Note that FeEDDHA (ethylenediamine-di-o-hydroxy-pheny lacetic acid), a type of chelated iron that is also known as Sequestrene 138, is available to plants even if the pH reaches 9. This is not the case with iron sulfate; another compound used to treat iron deficiency. But using FeEDDHA is not a long-term solution for iron deficiency.

In general, chelated fertilizers work better compared to regular micronutrients when the soil pH is greater than 6.5.

Effect of pH on the root availability of the essential elements in soil. Blue denotes the ideal soil pH for the majority of plants (slightly acidic). Courtesy of CoolKoon
Effect of pH on the root availability of the essential elements in the soil. Blue denotes the ideal soil pH for most plants (slightly acidic). Courtesy of CoolKoon

Heavy metals that are toxic to plants are more mobile in acidic soils and therefore are more likely to be taken up by plants. Aluminum is one of the metals that dissolve in low pH and damage plants. Severe acidity harms essential microorganisms and causes damage to the soil structure.

Since the optimal pH depends on the grown type of plant, we are providing a table with common crops and pH targets below.

PlantOptimal pH range
Most vegetables6.0-6.8
Optimal soil pH for different crops

To conclude, growers should aim to obtain ideal soil pH in the range that is most suitable for their plants to optimize the availability of the entire spectrum of nutrients and increase yield.

How the soil pH can change with time

The pH level in the soil can change due to fertilizers or the addition of organic matter such as compost and by watering with either acidic or alkaline water. When measuring the soil pH, it is essential to check the pH of the water as well. A non-neutral water pH will make the soil pH unstable.

Organic matter and minerals that break down in the soil over time lower the soil’s pH. In addition, nitrate that goes below the root zone (nitrate leaching) causes the pH to decrease as well. Therefore growers should constantly plan ahead to keep the pH in a range that supports plant growth. Soil pH intervention takes time to have an impact, and therefore planning, and early actions are crucial.

With poor soil drainage, you can expect an accumulation of salts in the field and an increased pH. Increasing the soil calcium concentrations can help with improving drainage. As calcium concentration goes up, the soil porosity improves.

How to measure soil pH and when to do it

The soil pH can be tested in the lab after soil samples from different parts of the field or garden are sent. In addition, there are field kits that provide a colorimetric indicator that show an estimate of the pH. Different kits require mixing the soil with water before the measurement.

When measuring the pH in the field, water the soil first. Use distilled water to make the soil wet and avoid making it muddy. To make the measurement accurate, take a sample of the soil away from spots exposed to direct sunlight (especially on hot days).

A more convenient way to measure pH is to use a digital soil ph meter. In this case, examine the probes and make sure they are in good condition and rust-free. Calibrate it with natural water before performing the test. Wash the probes with distilled water to remove salts before measuring.

A field kit used to determine soil pH | Courtesy of the university of Michigan SEAS
A field kit used to determine soil pH | Courtesy of the University of Michigan SEAS

How to change the soil pH

When the pH measurements start approaching the edges of the ideal soil pH range, it is time to act. Ideally, you should apply corrections in the fall, well before the planting, as it takes time for the pH to change.

How to lower the soil pH

To lower the pH, sulfur should be applied to the soil. Elemental sulfur, aluminum sulfate, and sulfuric acid are some of the options. The different forms vary in costs and speed of action. Elemental sulfur is considered a safe and economical way to reduce soil pH and is highly recommended to home growers.

If there are already plants in the soil, apply sulfur in low doses once a month. High dosages of sulfur are toxic to plants. Test the pH again every month.

The dosage depends on the soil type and the gap between the starting point and target pH. Soils rich in clay or organic matter, for example, have a high buffering capacity and require more sulfur before change can be observed.

Sulfur should be incorporated into the soil to affect the layer in the soil that is penetrated by the roots. Watering the soil after the sulfur application can help with that.

Gypsum (calcium sulfate) is another option if you grow in alkali soil. It is not very soluble, and therefore in normal soils, it will have a very minimal effect. In alkali soil, however, the sodium concentration is high. The calcium in the gypsum replaces the sodium in chemical interactions. This results in increased water infiltration and lowering of the soil pH.

Note that organic matter such as peat moss that has a pH of 3.0–4.0 can lower the soil pH as well.

As long as the pH is above 6.5, provide the micro-elements in foliage spraying.

How to increase the soil pH

Lower soil acidity can be obtained by adding lime to the soil. Ground agricultural limestone is a popular choice. The pace of change will be higher as finer the limestone particles. Hydrated pulverized limestone is considered to have the fastest effect, but precise dosages are important and can be easily missed.

Avoid using calcium magnesium carbonate (dolomitic limestone) if the soil contains normal or high magnesium levels. Adding magnesium to the soil in such situations can be toxic to the plants.

To calculate the amount of lime needed, refer to the soil test. The buffer capacity (ECEC) is the soil’s ability to resist pH changes. ECEC measures the Cation exchange capacity (CEC), a measure of the soil’s ability to hold positively charged ions. The buffer capacity, together with the desired change in pH, dictates the amount of lime that should be added.

The lime should be incorporated into the soil to a depth of at least 10 cm. Otherwise, the effect will be very superficial, and the deep soil layers will stay acidic. Optimal soil pH correction is the one that results in uniform acidity along the soil profile. Due to that, growers that avoid the destruction of the soil structure might find it challenging to optimize the pH profile.


The soil pH is a crucial factor when it comes to plant survival and prosperity. Farmers and home growers should monitor the soil pH constantly and plan to keep it in the optimal range. We are looking forward to welcoming you to our community and supporting you with any questions you might have regarding soil pH and plant health. In the meanwhile, as always, we wish you an abundant harvest.


Common plant watering mistakes made by home growers

Plant watering is a frequent action required to keep plants healthy and support their growth. As such, wrong practices can have a profound negative effect on plants. The good news is that these can be corrected very easily. Based on the experience we have in supporting growers on the Agrio app, we list the most common mistakes we encounter and explain how to avoid them.

Prolonged periods of wet soil

When it comes to soil moisture, it is easy to get it wrong. When the soil is wet, the process of gas exchange in the roots cannot take place at normal rates. If the gas exchange process is being interfered for a long period It can cause injuries to the roots. Soil moisture is also a crucial factor when it comes to soil-borne disease triggering. The presence of standing water will promote such diseases.

Dry soils on the other hand, can cause damage as well. The balance might be tricky when the environment is not monitored constantly.

Before we discuss a simple approach to monitoring water requirements, let’s discuss the factors that affect water availability.


Evapotranspiration is a process in which water vapor is released into the atmosphere from the soil, leaves, and other surfaces. It is one of the ways in which water moves from plants to the air.

Evapotranspiration is a major contributor to water cycling in the global hydrologic system. The rate of evapotranspiration depends on many factors such as plant type and cover, temperature, humidity, wind speed, solar radiation, soil type, and depth. In essence, the water that we provide to the plants should compensate for the water that was lost in the evapotranspiration process.

Evapotranspiration can change considerably when the weather changes, or when we change the plant location. There is no simple way to predict a watering schedule if environmental factors are not monitored.

Overwatering and poor soil drainage

One of the main reasons for prolonged times of wet soil is overwatering. If the watering rate is above the plant needs, accumulation of water in the plant’s surroundings can happen.

When water has nowhere to go, the soil can dry itself based on evaporation. But the rate is many times not sufficient.

One common mistake we encounter is the lack of holes at the bottom of the pot. This includes situations in which the holes are blocked by stones that made their way to the bottom of the pot with time.

When selecting the container you are going to use, make sure it contains holes that allow good soil drainage, and occasionally check to see that the holes are not blocked. It is a good practice to re-pot once a year to prevent soil compaction that can contribute to poor soil drainage and root development.

Excessive water should be removed soon after the plant’s watering is finished. This is important when the pot is placed inside a tray that collects the excessive water. The tray serves as a water reservoir if not emptied. The water from the tray is pulled back into the pot, not allowing the soil to dry and keeping it wet for longer than we intended.

Why container size affects soil drainage

When the plant is still small and the roots don’t spread to the entire soil volume, the drainage is poor. You can think about the soil sections that are not reachable by the plant roots as water reservoir. Therefore, it is important to start with a small pot. The small pot will constrain the size of the roots and will not allow the plant to reach its full potential. Therefore you should re-pot once the plant grows.

If you didn’t follow the watering rules we just discussed, you might be able to get a warning sign before the situation gets out of control. You will often see fungal growth on the surface of the soil. This might indicate that the soil moisture stayed high for too long time.


When the weather becomes hotter, you might forget to adjust the watering volumes. This can result in poor water conduction to the foliage that, in turn, will show up as a tip burn or wilt of the plant. When the plant is exposed to direct sunlight, the early symptoms can be sunburns due to the poor ability of the plant to cool itself.

Soil that stays dry for a long time will cause injuries to the roots, which are often irreversible.

Drought stress symptoms due to lack of plant watering
Drought stress symptoms due to lack of plant watering

How to decide when to water plants

As a rule of thumb, the plant should be watered whenever the top 3 inches (roughly 10 cm) of the soil dry out. Use your fingers to feel the soil moisture level and decide if watering is needed. Note that If the soil is still wet after 7 days since the last watering, there might be a problem with the drainage.

Salinity and plant watering

Salinity is the total concentration of the ions in a medium. Ions concentration goes up when salts are dissolved. High concentrations of different salts can cause problems. High concentrations of sodium chloride can have a devastating impact on seed germination and create osmotic stress causing plants to become water deficient. High concentrations of sodium chloride can also cause ion imbalances and toxicity seen on older leaves as burned tips, which can develop into more extended necrosis.

Check the level of salts in the designated soil before planting. Plan in advance, considering crop susceptibility to sodium chloride, soil structure, and characteristics, and the quality of your water source. If necessary, initiate preventive measures that can improve overall drainage or initiate several pre-planting, high-volume irrigation executions to wash and push aside salts.

Regularly search for visual symptoms of salinity, especially after heavy rains. Look for white-colored patches on the soil. This will improve response times to prevent serious damage from occurring.

Symptoms of salt toxicity in avocado plant
Symptoms of salt toxicity in avocado plant

How to check the salts concentration in the soil and water

Measuring devices are available in gardening stores to help you test the electrical conductivity of the soil and water. The electrical conductivity is proportional to the concentration of dissolved salts in the medium.


Avoid tap water when salts concentration is high

Very often, tap water is not a good source for plant irrigation. Tap water might contain heavy fluoride and chlorine that can aggregate in the soil and become toxic to plants. Tap water can also have a high pH that will cause an undesirable change to the soil pH in the long run. Rainwater should be the preferred option. It is common practice to aggregate rainwater in barrels during the winter and use them to irrigate plants all year.

Reverse water osmosis filters can be used to remove salts from tap water if rainwater is not a viable option.

As a last resort, put water In open containers for at least 24 hours to get rid of the fluoride. Unfortunately, this approach will not change the chlorine content in the water, and therefore it should not be the preferred approach to preprocess the water.

Prevent salt accumulation in the soil

To reduce the salt accumulation in the soil, don’t stop watering until water starts to come out from the bottom of the pot. This will allow the water to dissolve salts and remove them from the roots zone.

Overhead irrigation and increased disease risk

You might be tempted to stand in the middle of the garden and water your plants with a hose. It is a convenient way to cover the entire garden fast. But this approach is not recommended.

Overhead irrigation increases the leaf moisture and might cause a spread of pathogens from the soil to the plants.


Leaf wetness

Generally speaking, leaf wetness makes the environmental conditions more favorable for bacterial, fungal, and oomycete pathogens. By pouring the water on the soil, we can make sure that the leaves stay dry and decrease the risk of disease development.

Splashing water from contaminated soil

Another risk factor for disease development is the potential transfer of pathogens from the soil to above-the-ground plant parts. Water splashing can be how pathogens find their way from contaminated soils to stems, foliage, and fruits. Avoiding overhead irrigation is one way to lower this risk. Growers can also cover the soil with polyethylene or mulch to lower the risk even further.


With a few simple practices, you can ensure that your plants get an adequate amount of high-quality water. We are looking forward to welcoming you to our community and supporting you with any questions you might have regarding plant watering and plant health. In the meanwhile, as always, we wish you an abundant harvest.


What do you need to know about parasitic wasps in agriculture

Parasitic wasps in agriculture can play important role in keeping plants protected. In recent years the practical knowledge on leveraging their benefits has been growing rapidly. In this post, we will present information that will help you utilize this practice to improve plant protection in your fields and gardens.

"I cannot persuade myself that a beneficent and omnipotent God would have designedly created parasitic wasps with the express intention of feeding within the living bodies of Caterpillars." Charles Darwin
«I cannot persuade myself that a beneficent and omnipotent God would have designedly created parasitic wasps with the express intention of feeding within the living bodies of Caterpillars.» Charles Darwin

The importance of biocontrols in plant protection programs

The use of biocontrol has been around since the 19th century. Biocontrols have been used to control pests in agriculture and forestry. Biocontrols are a form of pest control that uses natural enemies to combat pests and they are a great way to reduce the amount of pesticides used.

The biggest problem with chemicals is that when you spray, the chemical doesn’t work anymore after a while because the insects build up resistance. Another downside is the toxicity of pesticides to beneficial insects. For example, most chemical sprays that kill whiteflies also kill bumblebees. Biocontrols can be used as an alternative that is friendly to pollinators and other beneficial insects.

Three types of biocontrols: predators, parasitoids, and pathogens

Biocontrols can be divided into three groups: predators, parasitoids, and pathogens. Predators eat the prey, while parasitoids lay their eggs on or in the body of their host. Parasitoids are more specific than predators and have a higher success rate in controlling populations of insects. Pathogens are microbial antagonists used to suppress diseases and eliminate insect pests. Bacillus thuringiensis for example, is a bacteria used as an insecticide that acts against moth caterpillars.

Most parasitic wasps are beneficial insects

After parasitic wasps lay their eggs, the eggs hatch, and the wasps larvae feed on the host’s body fluids. Parasitic wasps are not protected from parasitoidism; some wasps parasitize the parasites and therefore are not considered beneficial.

The number of pesticides available to farmers is running out

Pesticide resistance is a major problem for farmers around the world. Farmers need to find new ways of protecting their crops from pests or suffer the consequences. Due to the developed resistance, farmers must resort to more expensive and toxic pest control methods. The lack of new pesticides on the market is becoming more severe due to regulatory requirements. Even after such pesticides have been invented, it takes years before they can be used in farms because of the length of the approval processes. 

Biology of parasitoid wasps

Parasitoid wasps are fascinating creatures that have been around for millions of years and have evolved to be very successful in their niche. It is estimated that these organisms parasitize over 20% of all insect species. Therefore, understanding their way of action can be very helpful in pest control.

Parasitic wasps can be found worldwide, but they are most prevalent in temperate regions. The insects utilize the parasitoidism mechanism to survive and reproduce. In practice, it is an insect-host relation in which the larvae are dependent on the host while they feed on their tissues. As a result, the host will not be killed until there is a completion of larval development.

How to tell a parasitoid wasp from other insects

Wasps are shaped like a triangle, and their size is partly related to that of the host. They have long, thin waists and large wings. Some wasps are dark brown or black with yellow stripes on their bodies. Some wasps can be orange, red, or yellow with black stripes.

Wasps are distinguished from bees by their lack of pollen-carrying structures on their legs and the fact that they do not have the same kind of hairy body as bees.

How to build a parasitoid wasps population in fields and gardens

Support flowering plants in and around the growing area

Parasitic wasps can feed on nectar from flowers, so it’s not unusual for them to be attracted to the scent of flowers. The wasps can be found on most flowering plants, but they prefer some over others. The female parasitic wasp lays eggs on the host plant and then flies off to find more prey.

Allow at least a low level of pest presence on plants 

Some products allow the introduction of the wasps with the target insect to the growing area to support them even when the plants are not infested. But more generally, the wasps should be released when the host is present, and the infestation is mild.

Use insecticides that are selective and don’t harm parasitic wasps

Organophosphates such as malathion, disulfoton, and acephate are highly toxic to natural enemies. Carbaryl harms bees, natural enemies, and earthworms. Systemic neonicotinoids, such as imidacloprid, can be very toxic to bees and parasitic wasps, especially when applied to flowering plants. Pyrethroids, Afidopyropen, chlorantraniliprole, chlorpyrifos, dimethoate, fenpropathrin, methomyl, and thiamethoxam are toxic to parasitic wasps.

Less toxic insecticides are Potassium salts of fatty acids, Insecticidal oils, Microbial insecticides such as Bacillus thuringiensis and spinosad, and Botanical insecticides such as Pyrethrins and Azadirachtin.

Insect growth regulators such as pyriproxyfen and buprofezin are safe for parasitic wasps (but very toxic to beetles such as the vedalia beetle that can help in soft-scale insect control).

The persistence of the insecticides should be considered as well. While there are some whose effects will disappear after a few days, others will persist for months. For example, Carbaryl will have a bad effect on parasitic wasps for up to five months after the pesticide application.

Moth caterpillar killed by a braconid wasp parasitoid
Moth caterpillar killed by a wasp parasitoid

What are the disadvantages of the parasitoid wasps approach?

The negatives to parasitoids are the cost of purchasing them and the maintenance costs associated with keeping them alive in your garden or farm. Parasitoids do not harm your plants or crops, so you can use them without worrying about causing damage to the plants.

How to time the release of wasps?

The average lifespan for adults is around 1-2 weeks. It might be necessary to release more than once, depending on the size of the infestation.

Groups of parasitoid wasps

Ichneumonid wasps

This group of parasitoid wasps preys mainly on caterpillars of butterflies and moths

Ichneumonid wasps
Ichneumonid wasp

Braconid wasps

This group of parasitoid wasps attack caterpillars and a wide range of other insects, including greenflies and aphids. 

Braconid wasps
Braconid wasps

Chalcidoid wasps

This group of parasitoid wasps parasitizes eggs and larvae of greenfly, whitefly, cabbage caterpillars, and scale insects.

Examples of parasitoid wasps that are important to agriculture

Aphid wasp parasitoid

Aphid wasp parasitoid is an insect that feeds on aphids. It has a long, thin body with a black and yellow pattern. The female aphid wasp parasitoid lays her eggs inside the aphids. The eggs hatch inside the aphids, and the larvae feed on them until they are fully grown before emerging from their hosts as adult wasps.

The life cycle of an aphid wasp parasitoid starts with the egg stage, where females lay their eggs inside the bodies of aphids. This can happen in two ways: either through oviposition or ovipositor. Oviposition is when females lay eggs directly into the body of an aphid, whereas ovipositor is when they use a long tube-like organ to insert the eggs.


Encarsia formosa

Encarsia formosa is a species of chalcidoid wasp. It is a commercially available parasitoid of greenhouse whitefly,

Scoliid wasp

Scoliid wasps are a family that feeds on beetles. The female finds the beetle grubs in the soil, and lays an egg on it. The young wasps feed on the beetle grub.

Anagyrus lopezi

Acts against cassava mealybugs. These insects can reduce crop yields by 60-80%. A successful preventative program was conducted in Thailand in which parasitic wasps were being reared by the millions and mass-released. A similar experiment was conducted in West Africa in the early 1980s. The result was a suppression of the pest population levels from more than 100 individuals on each cassava tip to fewer than 10-20.

Hyperparasitism wasps

Hyperparasites usually appear at the end of summer, when conditions are favorable for them and their host. Hyperparasites can disrupt the effectiveness of a biological control program. It is difficult to eliminate them, but you can minimize their population. Make sure to remove the parasitic wasps in late summer to remove the host of the hyperparasites.

Dendrocerus spp. and Alloxysta spp. attack Aphidius spp. You can know they are present by examining the exit hole in the aphid mummy.


In this article, we summarized the benefits of using parasitic wasps in agriculture. In practice, no biocontrol is perfect. Instead, a balance should be found between conventional insecticide applications and biocontrol. Greenhouses have been the domain of biocontrol for decades, even when chemical pesticide usage was on the rise. Partly thanks to the fact that the value of the crop is higher. In addition, greenhouses have a significant advantage as they function as a closed environment. Beneficial insects are going to stay inside. Recently biocontrols have become more prevalent in sectors such as floriculture, viticulture, and outdoor fruits. Track the number of wasps in the growing area and see what works best for you. When the control of different insects is needed, more wasps should be released, and the costs can be higher than conventional treatment. 

We are still in the early days, and robust protocols do not always exist. There is a need to start practicing it to gain knowledge. Join our community where we discuss such practices in a case-by-case manner, we are happy to support your experimentations and help you learn and improve.


Lo que debe saber sobre las imágenes NDVI y los índices de vegetación

El monitoreo de los campos agrícolas, el seguimiento del progreso y la detección de problemas en el campo antes de que los síntomas sean evidentes, es crucial para una cosecha exitosa. Los emocionantes avances en tecnología nos permiten capturar imágenes de granjas en todo el mundo con la ayuda de satélites, lo que hace que el monitoreo sea simple y asequible. El índice de vegetación más popular utilizado por los agricultores es el Índice de vegetación de diferencia normalizada (NDVI); monitorear el imágenes NDVI en la agricultura puede servir como un indicador de la salud de las plantas.

¿Qué es NDVI y por qué es útil?

NDVI es un método de detección remota para estimar la salud y la biomasa de los cultivos. El índice NDVI mide la diferencia entre la reflectancia visible e infrarroja cercana de la vegetación. La reflectancia del cultivo depende del área foliar, el contenido de clorofila, la edad de las hojas, la densidad del dosel y el tipo de suelo. NDVI se usa a menudo con imágenes satelitales, que proporcionan imágenes de alta resolución desde el espacio. El uso de satélites ha ayudado a que el NDVI sea más accesible para los agricultores de todo el mundo porque es accesible para cualquier persona con conexión a Internet. El monitoreo de NDVI en la agricultura para la evaluación de la salud de los cultivos ha existido durante décadas. Aún así, ha ganado popularidad recientemente debido al uso de satélites y fotografías aéreas de alta resolución que brindan visitas frecuentes. Brinda una estimación precisa de la biomasa vegetal y el índice de área foliar (LAI) sin necesidad de recopilar datos del suelo o interpretación manual.

¿Cómo se calcula el NDVI?

El NDVI se calcula con la siguiente fórmula:

NDVI = (NIR-Red) / (NIR+Red)

Donde NIR es luz infrarroja cercana y Red es la luz roja visible. Los valores de NDVI varían de -1 a 1. Las áreas de arena, roca o nieve muestran valores de 0,1 o menos. La vegetación escasa, como los cultivos senescentes, muestra valores moderados de NDVI de entre 0,2 y 0,5. Los valores altos de NDVI de 0,6 a 0,9 corresponden a una vegetación densa.

¿Cómo puedo comenzar a monitorear el imágenes NDVI e índices de vegetación de mis campos?

El seguimiento de los campos se vuelve muy sencillo y no requiere conocimientos previos. Aplicaciones como Agrio le permiten dibujar sus campos en el mapa para iniciar el proceso de monitoreo. Una vez que se define la ubicación de los campos, recibirá escaneos e interpretaciones frecuentes.

¿Cómo analizar imágenes NDVI?

Al inspeccionar los escaneos NDVI, podemos comprender mejor la situación de los campos y detectar lugares que puedan mostrar estrés. Por ejemplo, examine el nivel de verde en la imagen a continuación, que muestra las diferentes etapas de desarrollo de la planta en los distintos campos y la variación interna dentro de los campos individuales.

Escaneos NDVI de campos de trigo
Escaneos NDVI de campos de trigo

Observe los parches verdes aislados en la lectura naranja que indica el desarrollo del crecimiento de malezas.

Al comparar los escaneos NDVI de días consecutivos, podemos ver manchas que no se desarrollan como se esperaba y requieren atención inmediata. Por ejemplo, examine la imagen a continuación y observe las manchas rojas en los campos que se encuentran en las primeras etapas de desarrollo y, por lo tanto, se espera que muestren un aumento en el NDVI con el tiempo.

Seguimiento de los cambios diarios en el escaneo NDVI
Seguimiento de los cambios diarios en el escaneo NDVI

Las limitaciones del NDVI en la agricultura

NDVI muestra una baja correlación con el contenido de clorofila; es más severo en etapas avanzadas de crecimiento cuando el NDVI se satura. Esta saturación se debe al aumento en el área foliar y la densidad de la estructura del dosel. Por lo tanto, en esta etapa, existe la necesidad de monitorear un índice que esté altamente correlacionado con el contenido de clorofila de la hoja y menos sensible a la estructura de la hoja y el dosel.

La clorofila juega un papel crucial en los procesos fotosintéticos como la captación de luz; por lo tanto, el contenido de clorofila es un indicador potencial de una variedad de tensiones. Otras bandas espectrales pueden detectar cambios en el funcionamiento de la clorofila, como el borde rojo desde el principio. Esto precede a las pérdidas reales en las concentraciones de clorofila de las hojas; por lo tanto, monitorear tales cambios puede ser un indicador temprano para desarrollar estrés biótico y abiótico.

¿Por qué el progreso tecnológico hace que la selección de índices de vegetación específicos sea menos crítica?

Dado que nos hemos vuelto muy hábiles para enseñar a las computadoras a identificar patrones en una gran cantidad de datos, no es esencial seleccionar un índice específico. En cambio, la inteligencia artificial puede analizar todo el espectro de luz reflejada y proporcionar información. En los viejos tiempos, se necesitaban funciones prediseñadas para entrenar máquinas para clasificar patrones en los datos. Pero estos días terminaron y ahora sabemos cómo programar la máquina para elegir las mejores funciones durante el proceso de capacitación.

Los índices de vegetación son convenientes cuando los expertos humanos examinan los escaneos. Es difícil para los humanos dar sentido a una gran cantidad de información codificada en el espectro completo. Para ello, sigue siendo útil presentar índices específicos con los que los expertos estén familiarizados. Pero la cantidad de acres monitoreados y la alta frecuencia de revisitas satelitales hacen que sea menos deseable para los productores y agrónomos hacer el análisis manualmente.

Lo que comenzó como una elección por limitaciones se convirtió en una convención en la industria.

Aprovechar la inteligencia artificial para detectar anomalías en las imágenes satelitales

Después de discutir los beneficios que pueden resultar del monitoreo de la reflectancia espectral, debemos abordar la cuestión de la practicidad de este enfoque. Uno de los desafíos de aprovechar el análisis espectral en la detección de estrés es identificar los patrones precisos en los escaneos satelitales que indican que las plantas están bajo estrés. Incluso cuando las personas desarrollan la experiencia de examinar los escaneos manualmente, la tarea se vuelve engorrosa cuando la cantidad de acres que se cubren es alta.

El uso de la inteligencia artificial en la agricultura ha ido en aumento debido a los recientes avances tecnológicos y contribuye a los esfuerzos para superar estos desafíos. Las anomalías se detectan utilizando inteligencia artificial al tomar decisiones basadas en patrones que se aprendieron de grandes conjuntos de datos de entrenamiento.

Todo el espectro de luz que pueden capturar los sensores satelitales contiene información interesante en lo que respecta a la detección temprana del estrés.
Todo el espectro de luz que pueden capturar los sensores satelitales contiene información interesante en lo que respecta a la detección temprana del estrés.

El progreso en el desarrollo de herramientas de detección temprana puede acelerarse una vez que se pueda recopilar un gran volumen de datos de alta calidad de manera asequible. Para lograrlo, adoptamos el enfoque de crowdsourcing y creamos una herramienta que permite a los productores identificar la patología de las plantas basándose en imágenes capturadas con teléfonos inteligentes. Los productores se benefician directamente de este servicio mientras ayudan a entrenar algoritmos para la detección temprana, una capacidad que puede ser más beneficiosa para ellos a largo plazo. Las imágenes etiquetadas geográficamente se utilizan como datos reales y nos ayudan a entrenar los algoritmos para identificar los problemas directamente desde el escaneo satelital. A la computadora se le presentan escaneos satelitales en los que se sabe cuáles de las regiones del campo están enfermas. Progresamos rápidamente ya que podemos recopilar un gran volumen de datos de alta calidad.

Dichos datos nos permiten aprender los patrones de los patrones de reflectancia típicos de una gran cantidad de problemas de plantas diferentes. Aprovechamos estas capacidades para desarrollar soluciones de monitoreo fáciles de usar. Los agricultores que usan Agrio pueden monitorear la salud de sus campos de una manera muy simple. Todo lo que se necesita es definir la ubicación del campo dibujando un polígono que represente el límite del campo. Una vez hecho esto, nos pondremos en marcha para realizar un seguimiento constante por usted y notificarle cuando haya un nuevo escaneo disponible.


El monitoreo satelital en la agricultura es una técnica que se ha utilizado durante muchos años. Sin embargo, el uso de tecnología satelital para monitorear campos agrícolas ha aumentado significativamente durante la última década. El uso de monitoreo satelital en la agricultura puede aumentar el rendimiento, mejorar la precisión y la detección temprana de problemas con los cultivos.

En nuestra plataforma, los usuarios pueden obtener acceso a los escaneos satelitales de Sentinel y PlanetScope. Aplicamos nuestro algoritmo a las imágenes e índices de vegetación para monitorear el progreso del cultivo, detectar problemas en el campo y alertar a los productores cuando se necesitan intervenciones.

Lo invitamos a aprovechar estas capacidades para evitar pérdidas, crecer mejor y rociar menos.


How to prevent plant fungal diseases

Experiencing poor crop yields due to plant fungal diseases such as downy mildew, rose black spots, or rust? Do not see this as a necessity of reality. Plant fungal diseases are becoming more and more prevalent as the climate changes. They cause significant economic losses and are challenging to deal with, but with the right approach, remarkable results can be achieved.

Did you find yourself again in the situation in which the plants show symptoms? You probably ask yourself what this disease is and how I should treat it. Unfortunately, many growers stop there. However, the most critical question to ask should be – how should I prevent it from happening next time.

In the ideal situation, growers should be able to apply fungicides before the disease starts to develop in the field. You might be tempted to spray when there is a slight doubt. However, excessive spraying is not economical and can cause unnecessary damage to plants. We have limited opportunities to apply preventative measures, so it’s better to be at the optimal time.

One condition that should be met before a decision to spray is made is the presence of spores in the field. However, the presence of the fungal spores on plants is not enough; the disease develops only when the weather conditions support that. 

Farmers find it difficult to monitor these conditions as it requires knowledge about the environmental conditions that can not be easily obtained. But fungicides applied when spores are not in the field or when weather conditions are not suitable for the disease development get wasted. In addition, such applications increase the risk of pesticide injury to the plants, are bad for the environment and growers’ health, and reduce the potential profits at the end of the season.

So how can you decide when it is time to spray? Let us dive a bit into the technicalities. By the end of this short article, you should be informed on how to time the preventative applications correctly.

How do plant fungal diseases develop?

Fungal spores are the first stage in the fungal life cycle and the mean by which fugal diseases spread. Their mobility helps them travel by riding other organisms or by traveling long distances carried by the wind. Once they land in a supportive environment, the spores germinate and form a mycelium. The mycelium provides nutrients to the spores and supports their growth.

As the mycelium grows, it may encounter another compatible fungus. The fungi cells merge into a single cell and then split into two cells, which results in mixed genetic information. This sexual reproduction ensures genetic diversity.

In some environmental conditions, most fungi can reproduce asexually. When it’s time to reproduce, instead of branching out and combining with another mycelium, they produce mitospores (Asexual spores) that look just like the parent. These then start a new cycle and grow a new mycelium.

Germination and reproduction of the spores initiate the disease. Pathogenic fungi can live inside plants or on their surfaces. They feed on the plant tissue and damage it.

In the stage where the spores were not germinated and infection was not started, protectants fungicides can be applied. Protectants can be used in healthy plants to prevent spores from growing or penetrating the host tissue. Some examples of protectants are mancozeb, chlorothalonil, and copper-based fungicides. After the disease is initiated, other fungicides should be applied to eradicate the fungi. These fungicides should have a different mechanism of action that disturb other processes that allow the fungus to develop and survive. Therefore, it is important to alternate between different fungicides. Utilizing different mechanisms of action help to prevent resistance development.

Philippa Uwins, CC BY-SA 3.0 <>, via Wikimedia Commons
Fugal spores as can be seen in electronic microscope | Philippa Uwins, CC BY-SA 3.0, via Wikimedia Commons

Spore traps can provide early warning of the spread of plant fungal diseases

How can you know if the spores were carried with the wind and arrived in your region? The direct way is to install spores traps in the fields. Agricultural spore traps are used to detect the presence of fungal spores in the air. They help farmers to take preventive measures against plant fungal diseases. Farmers should install the traps in good distribution in fields and send the air samples from the traps to the lab at a high enough frequency. The lab does a microscope analysis to quantify the spores and classify them.

The trap costs, maintenance overhead, and the need to send frequent samples to the labs might make it a non-practical practice. There are attempts to bring costs down and do the analysis in the field, but in the near future, growers might want to consider alternative approaches.

Airborne spores cause the spread of plant fungal diseases. Courtesy of Dr. Sahay
Airborne spores cause the spread of plant fungal diseases. Courtesy of Dr. Sahay

How can we learn about spores spread without installing expensive hardware?

Considering the obstacles that were discussed above, we can think of other ways to monitor the spread of spores. Plants can be thought of as spore traps, in the fields and around them. Gardens are excellent examples of places in which fungal diseases can get discovered first.

When spores land on plants and disease develops, the symptoms make it possible to identify the exact pathogen and save the need to do the lab testing. The region in which the disease is initiated is going to benefit less from the early warning but the fields around can. But actually, we can do better than that by modeling long-distance spread.

How far from the hot spot can such an observation be used as a warning? Once an area with an infestation is discovered, weather-based models can be used to predict the routes of spread of the spores by analyzing the wind direction and speed. By combining such predictions with actual observations on the ground, as the migration progresses, we can have a good understanding of the spores spread in real-time.

What are the weather conditions that support fungal disease development?

Weather variables such as temperature, humidity, and rainfall can help model the risk of spores germination and reproduction. When the optimal conditions persist for several uninterrupted hours during the day, the disease initiation is expected to happen. Each fungus should be modeled differently. Scientists arrive at such models by experimenting with the environmental conditions in a controlled environment. Growers and crop advisors can utilize such models to track the development of the fungi of interest in their fields.

With the ability to track the weather constantly and apply such models, an early warning system became possible. As discussed above, if the weather conditions are suitable but the spores are not present, an alert will cause unnecessary fungicide application. Therefore it is essential to wait for these two conditions to be met. With the aid of technology, and the ability to collect data globally, we managed to bring the predictive capabilities of this approach to an all-new level, and we made it easily accessible for you.


By considering the presence of the spores in remote areas, the wind variables, the presence of potential hosts in the route between your fields and the monitored remote regions, and the risk of spores germination and reproducing; we can provide an accurate map of the risks of many diseases across the globe. By using this approach, we can optimize the decision-making in fungicide applications without the need to install expensive hardware in fields. In Agrio we built a large community of farmers and gardeners that are monitoring their crops. The information that is being uploaded to the system, together with the identification of the plant problems, help us to see the big picture. We invite you to take advantage of this progress and increase your planning capabilities for better plant protection.


Aplicación para identificar enfermedades y plagas en las plantas

La inspección visual es un aspecto importante cuando se trata de la salud de las plantas. Dado que las pruebas de laboratorio no son una herramienta práctica para un diagnóstico diario, debido a los costos y el tiempo necesario, los productores toman decisiones en función de los síntomas que se pueden observar en las plantas. La inspección de plantas requiere mucho tiempo y, a menudo, deja dudas a los agricultores. Los asesores de cultivos están ahí para apoyar a los agricultores en sus decisiones y asegurarse de que se minimicen los errores. Pero, ¿qué sucede si dicha asistencia no se encuentra disponible? Afortunadamente, la tecnología puede venir al rescate. Una aplicación basada en inteligencia artificial para identificar enfermedades y plagas en plantas se hizo realidad gracias al gran salto en el rendimiento logrado por la comunidad de investigación de inteligencia artificial.

En los últimos años, los productos basados en software han alcanzado la capacidad de completar tareas visuales con una precisión superior a la de un humano experto. ¿Por qué no aplicar entonces esta tecnología a la asesoría agronómica? La generalización de los dispositivos móviles hace que esta pregunta sea aún más relevante, ya que dichos dispositivos permitieron distribuir una solución a gran escala. Los agricultores y productores caseros pueden llevar un agrónomo en el bolsillo cuando van a inspeccionar sus plantas.

Agrio es una aplicación para Android e iOS desarrollada para hacer precisamente eso. Ayuda a los agricultores a gestionar la protección de las plantas de una forma más óptima. La identificación de enfermedades es un componente crucial en la rutina de protección de plantas. El valor que ofrece la aplicación también atrae a otras audiencias. Los cultivadores domésticos que buscan asesoramiento profesional son una gran parte de la base de usuarios, aprovechando la función de identificación de enfermedades para sus necesidades. Esto está alineado con una tendencia creciente de los millennials, quienes usan la tecnología para ayudar a cultivar alimentos en sus hogares. Además, Agrio sugiere tratamientos biológicos y orgánicos como parte de los protocolos de manejo integrado de plagas, lo que lo hace aún más relevante para los jardineros y cultivadores domésticos. ¿Has notado que las hojas de tomate se enroscan en tu jardín y tienes curiosidad por saber cuál es la causa? Nuestra app puede resolverlo una vez que vea la imagen de los síntomas.

Agrio | Una Aplicación que identifica enfermedades y plagas en las plantas
Agrio | Una Aplicación que identifica enfermedades y plagas en las plantas

Aplicación para identificar enfermedades y plagas en las plantas y ahorrar tiempo

Durante la exploración de cultivos, la identificación instantánea ahorra la necesidad de perder tiempo identificando los problemas y registrando los resultados. Además, las imágenes grabadas pueden ser inspeccionadas por otros y utilizadas como referencia en el futuro. Los agricultores que tienen dificultades para obtener un diagnóstico preciso utilizan la herramienta como asistente o como una forma de recibir una segunda opinión cuando hay dudas. Esto es especialmente importante cuando no se dispone de otras fuentes de asesoramiento, como en países en los que la relación entre el número de agricultores y agrónomos es muy alta.

Síntomas del virus del enrollamiento de la hoja amarilla en el tomate
Síntomas del virus del enrollamiento de la hoja amarilla en el tomate

¿Por qué es importante identificar la causa del problema de manera precisa?

Cada patógeno o insecto requerirá un tratamiento diferente. Además, los patógenos pueden desarrollar resistencia a algunos tratamientos en algunas zonas geográficas; esta información debe tenerse en cuenta cuando se recomiende el tratamiento.

Cuando los problemas ya se observan en el terreno, una identificación exacta puede ayudar a prevenir la propagación. La estrategia sobre la que se deben aplicar las medidas depende de la identificación precisa de la causa.

Cuando se trata de prevención, los productores deben considerar las implicaciones para las siguientes temporadas. Se puede recomendar la rotación de cultivos o el tratamiento del suelo cuando se espera que la plaga sobreviva en el suelo o en los restos de plantas. En el caso de una enfermedad viral, se puede recomendar sembrar variedades resistentes a virus en las siguientes temporadas una vez que se haya identificado el virus en la región. Otros factores que requieren la preparación del suelo antes de la siembra son el suelo salino, el pH incorrecto del suelo, la presencia de nematodos y más. En todos los ejemplos anteriores, se debe obtener una identificación exacta del problema para evitar futuras pérdidas.

Cuando se trata de reconocimiento de objetos en un entorno denso y desordenado, los expertos humanos pueden equivocarse. Afortunadamente, la inteligencia artificial se puede entrenar para filtrar las distracciones y proporcionar una identificación y clasificación rápidas de los parches importantes en una imagen.
Cuando se trata de reconocimiento de objetos en un entorno denso y desordenado, los expertos humanos pueden equivocarse. Afortunadamente, la inteligencia artificial se puede entrenar para filtrar las distracciones y proporcionar una identificación y clasificación rápidas de los parches importantes en una imagen.

¿Cómo identifica la inteligencia artificial las enfermedades y plagas de las plantas?

El reconocimiento de imágenes de última generación se basa en el concepto de redes neuronales artificiales. De manera similar a como aprenden los estudiantes de agronomía, a la red neuronal se le presentan ejemplos de plantas enfermas que fueron etiquetadas por expertos. En el proceso de aprendizaje, la red neuronal se adapta hasta maximizar la puntuación de rendimiento. El resultado es una aplicación que identifica las enfermedades de las plantas y mejora constantemente a medida que se presentan más ejemplos. Con base en los comentarios de los productores y las observaciones realizadas en los campos, Agrio aprende qué protocolos de tratamiento son más efectivos. Un tratamiento que no fue efectivo señala un posible problema con la identificación y proporciona más información para que la red mejore.

Por qué la inteligencia artificial es el enfoque correcto

Hay un vacío masivo en los asesores de protección de plantas que conduce al 40% de las pérdidas de rendimiento. La relación entre trabajadores de extensión y agricultores es desproporcionadamente baja y está lejos de la relación óptima de 1:50. El acceso a asesoramiento de alta calidad está aún menos disponible para los cultivadores domésticos. Con la ayuda de la IA, podemos ofrecer una solución de reconocimiento de imágenes de uso gratuito que puede cerrar esta brecha. Agrio analiza miles de imágenes diariamente, lo que de otro modo requeriría cientos de horas de expertos humanos, una alternativa que no es económica. La solución no tiene una escala limitada y, por lo tanto, ofrece una forma viable de apoyar a los productores, mejorar la producción mundial de alimentos y reducir el hambre.

Los síntomas de diferentes enfermedades pueden parecer similares, ¿cómo puede Agrio notar la diferencia?

Los síntomas que se ven en las diferentes partes de la planta y la información sobre la geografía y el clima nos ayudan a diferenciar los problemas. Similar al proceso de diagnóstico médico, la aplicación presentará preguntas a los agricultores para ayudarlos a llegar al diagnóstico adecuado en caso de que la información en las imágenes sea insuficiente.

¿Por qué los satélites y otros dispositivos de detección remota no son suficientes cuando se trata del diagnóstico exacto de los problemas de las plantas?

La percepción remota es útil cuando los productores desean identificar las ubicaciones exactas donde comenzaron los problemas. Pero las cámaras montadas en drones u otra maquinaria solo verán un subconjunto de los síntomas. A menudo, los síntomas que se observan en el follaje son secundarios; el problema real puede estar relacionado con los tejidos internos de los tallos o las raíces. La aplicación instruye al agricultor sobre qué intervenciones se necesitan para exponer la causa raíz. En este sentido, todavía no existe una buena alternativa a las botas en el terreno.

¿Puede Agrio aprender a identificar enfermedades de las plantas que antes no veía?

La aplicación está en constante aprendizaje. Cuando los usuarios suben imágenes que no pueden ser identificadas mediante inteligencia artificial, hay una opción para compartir las fotos con expertos humanos. La correspondencia entre el cultivador y los expertos es utilizada por la inteligencia artificial para aprender. Como resultado, Agrio puede aplicar las habilidades que aprendió antes para dominar nuevas plantas más rápidamente.

¿Qué aprendió Agrio a identificar hasta ahora?

Las enfermedades y las plagas de insectos son la mayoría de los problemas que tratamos, pero se aprendieron muchos otros factores estresantes abióticos, como las deficiencias de nutrientes, las toxicidades, factores ambientales como el viento y el granizo, y muchos más. La capacidad de distinguir entre estrés biótico y abiótico es importante y puede ahorrar aplicaciones de pesticidas no requeridas.

Aplicación de diagnóstico de plantas que aprende constantemente
Aplicación de diagnóstico de plantas que aprende constantemente

¿Cuáles son los usos de dicha tecnología en la granja del futuro?

En el futuro, la tecnología de visión artificial será fundamental en las granjas autónomas. En tales configuraciones, la identificación automática de enfermedades será crucial.


Agrio es una aplicación que identifica enfermedades y plagas en las plantas y sirve como un agrónomo personal que se puede llevar en el bolsillo. Ponemos a disposición de cualquier agricultor con un smartphone un innovador sistema de apoyo para la protección de plantas. Únete a nosotros hoy mismo y sé parte de este emocionante viaje.


An Albanian agricultural development expert shares his thoughts on precision agriculture

We met Aurel Grabocka in 2020 when he expressed interest in Agrio and got inspired by his enthusiasm for making agriculture better. We had wonderful conversations with him in which we learned about the agriculture scene in Albania and his ideas on how to improve it. We invited him to share his experience with precision agriculture, challenges, and his hopes for the future.

Tell us a bit about yourself, and your experience with agriculture. What kind of services do you provide to growers?

I have a master’s degree as an advisor and trainer for small and medium-sized enterprises (SMEs).

In 1998 I founded the Regional Development Agency (SME) of Korce, Albania. I am the founder and CEO of RDA Korca since then. It is an NGO.

Mainly, RDA Korca is known as a consulting agency for SMEs and local governments and is a leader in the development of business plans and feasibility studies for SMEs. It has been also a supporter of startups in the region.

Since 2019, supported by two EU projects, we have developed and are working on smart agriculture and regenerative agriculture. Especially we are developing extension agriculture services based on Agriculture 4.0. 

Korca region is one of the most important producers of apples in Albania and we are working to support apple producers in producing high-quality apples. Through smart agriculture applications like Agrio, we support them to use inputs in a smart way and minimize the use of pesticides and insecticides. At the same time, we are cooperating with innovative agronomists to change the nutrition of the orchards and increase their immunity. 

The Objective is to enhance Korca’s farmers by increasing the quality competition of Korca’s apples. 

An agricultural development expert examining an apple tree

How many people work with you? What is their responsibility?

We are a small team of three full-time people. Their responsibility is to train farmers on how to use smart applications like Agrio and team with them to improve the production on their orchards.

The Agronomist supports them in improving the nutrition of the orchards based on the data from weather stations, disease models, smart agriculture applications, and SAP analyzes. 

We hire experts based on the requests and needs of our farmers.

Tell us about the disease and pest challenges? How did you manage plant protection in your fields in the past?

Apple orchards suffer from a lot of diseases and insects. In the past farmers managed plant protection based on assumptions and by cooperating with each other. They were spraying based on their experience and having the same calendar every year. As a result, the use of pesticides and insecticides has been increasing every year.

In the last two years, we have introduced disease models based on data from the weather stations. At the same time, we are introducing Agrio as an application that supports farmers in their decisions to protect their crops from insects and pests. 

Our main approach is to support farmers through Agrio and regenerative agriculture practices based on SAP analyses. The route to take samples for SAP analyses is based on the indicators and indices offered by Agrio.

How did you come across Agrio?

Agrio has been suggested to us by a German expert that visited our farms. He suggested this application as a great tool to improve the protection of the orchards from pests and insects. After using it for some days I had an online meeting with Mr. Nessi Benishti who is the CEO of Agrio. Since then we have increased the cooperation, testing, and working with the tool. We are looking to go even deeper into this cooperation.

Recently, we have started to create Teams to support farmers through the platform. It is very interesting and helpful. Farmers find many beneficial services just by using their smartphones.

A seminar on disease and pest identification in apple trees

What is your perspective on digital solutions in agriculture? What do you wish to see in the future?

We are looking to increase the cooperation with Agrio and at the same time develop the network of farmers. Agrio has a great option of teamwork and cooperating with the farmers and experts on the same platform. At the same time, we can have the support of Agrio experts that support us very fast and with great quality advice.

We are looking to cover all of Albania with our extension services. In the near future, we will have a call to ask experts to join us through the platform and to support farmers with advice.

How the satellite scanning changes the way you understand the orchards’ situation? 

Agrio offers a lot of functions to check the health of the orchards by scanning with satellites. It is easy to compare the images of the satellites, check on graphs how the vegetation is doing, and develop the crop scouting route to visit the areas which represent a decrease in the indicators. It offers the possibility to cooperate with the team, exchange ideas and notes, and check the quality of the work.

Through the satellite images, the farmer knows exactly the location where to check and find out in advance if something is wrong with his crops.

Can you describe a particular case in which Agrio helped you detect a pest or a disease? How is the app helping you with your work? 

Agrio team assists us without request on areas that show a decrease in the indicators. They send to us the location and with the help of the smartphone GPS location, we go to the exact location and check for the problems. In this case, after we send the pictures related to the problems, first there were doubts about nematodes on the roots. After digging and discovering the roots, we have seen that there were no signs of nematodes. So, we continued to check the tree and we found prionus apple root borer. After showing through pictures of the stem borer and after the experts of Agrio helped us to identify it, we received their suggestions for the treatment. After applying the treatment, we saw that the vegetation indicators for this field are increasing, and the trees are doing very well.

Precision agriculture applied to early disease and pest detection in the orchard
Detection of pest infestation in an orchard with the aid of satellite imagery

What is the dynamic in the community of growers in your region? What is the level of interest in precision agriculture solutions? 

We have more than two years of promoting precision agriculture and testing it. It is moving and growing but still, it is slow and difficult. Farmers have a lot of difficulties and lack the resources and knowledge to apply precise agriculture. 

What do you wish for in the future?

We wish to increase the community of farmers that use precise agriculture and improve the quality of their products. We want to decrease the use of pesticides and insecticides and provide healthy food for people. We wish to regenerate soil on our farms and produce dense crops and fruits full of vitamins and proteins.

Anything else that you would like to add?

We are changing the existing agriculture practices and we hope that farmers will change on a great scale. 

Public institutions, local governments, and universities need to support and develop smart agriculture to change the existing theories and practices. Especially public servants and academia of agriculture departments in the universities must increase their knowledge of precision agriculture and start moving from conventional agriculture to regenerative agriculture.


A guava grower from Hyderabad shares his experience with precision plant protection

We met Syed Abdulla in 2021 when he just joined our platform. Syed is a guava grower from Hyderabad, Telangana, India. He represents a promising phenomenon of young professionals who bring technology to the farm to help shape the future of agriculture. We invited him to discuss plant protection, and share his experience, challenges, and his hopes for the future.

Hello Syed, please tell us a bit about yourself, and your orchard history. Why did you choose to grow guava?

I am a medical student, my father was a sales manager, and my brother is a computer science graduate. 

My grandfather used to grow sugarcane then shifted to rice, my father continued to grow rice for several years. These were not very profitable, then we gave the land for lease for a few years, they grew cotton in that period, then in 2018 we planted guava, coconut, and lemon. 

The choice of planting guava was not just about earning money but providing products that would meet the nutritional needs of the body, guava contains vitamin C, iron, and calcium. These minerals and vitamins are part of the majority of medical supplements. We chose Taiwan guava because it has a good shelf life. On a tree as well as post-harvest. 

How many people work with you? What is their responsibility?

My teammates are my father and brother, they monitor field works and see that irrigation and fertigation are provided on time.l live in the city to pursue my studies, I monitor the farm through satellite scans according to the scans I plan my visit to the orchard, I come and inspect the trees and I also deal with fertigation and its plan. 

There are 4 resident workers who deal with the daily inspection of the orchard, keeping it clean and spraying insecticides and providing irrigation and fertigation, and harvesting. 

There is an additional team of 10 workers who come to work when the workload increases. During harvesting for example.

Plant protection made simpler with the aid of remote sensing

Tell us about the disease and pest challenges? How did you manage the plant protection in your orchard in the past?

In guava the major destructive pest is the fruit fly, which can cause 100% fruit damage, fruit borers can also cause significant damage if spraying is not applied during the fruit set. Mealybug is a minor pest, it can be easily controlled if the fruit is not bagged, but when bagging is done, if the bag is not tightened to twig properly, it can cause severe infestations if the periodic sprays are not done, the major problem with the mealybug is its hiding capability and the waxy layer on the adults which gives them protection. Other foliar pests can be easily controlled by contact and systematic insecticide until they are susceptible to available insecticides. Then comes fungal diseases, it is very challenging to control fungi up to 100%, and this causes the development of fungal diseases that damage fruits during heavy rains. During such periods the fungi spread rapidly to other fruits. 

Nematodes can cause severe retardation of growth in the summer. 

After getting versed with all pests and diseases if one can bring fruit damage down to 5% to 10% then that is a great achievement. In the beginning, if you start managing without taking advice from experts and experienced farmers then you will face huge losses, that’s the reason I want to share my journey to help farmers avoid the mistakes which I did. 

In the past, we experienced massive rains during the harvest period which led to huge fruit fly infestation and 100% loss.

In another season,  a representative of a pesticide company made weekly visits to the orchard and suggested solutions for problems. He promised that he will give results without bagging, but we didn’t want to take the risk, so we bagged 75% of the fruits and left 25% unbagged, but after 50% of harvest the first spell of rain caused fruit fly infestation on unbagged fruits and the second spell of rainfall lasting for 15 days causing the development of fungus in bagged fruits leading to 50% damage.

As a biology student, I am curious about pests, plants, and diseases and I gained most of my knowledge regarding them till the end of the third season. We managed to maintain plant protection based on this knowledge and then I came across Agrio. 

How did you come across Agrio?

One day I thought I am not the only one who is doing agriculture. There are lakhs of people around the world who are dealing with these challenges, so I started searching for platforms where I will get access to the best agriculture experts. I was searching for platforms in the play store, and this is how I came across Agrio. 

What is your perspective on digital solutions in agriculture? What do you wish to see in the future?

Digital solutions can make a huge positive impact in the agriculture sector but can’t eliminate physical inspection, they make things easier, less time-consuming, and can make agriculture a part-time business and a more profitable business. 

Regarding Agrio, I want to see the expansion of the pest modeling. I am using the daily briefing feature which keeps updating the stage of pest and status of pest infestation so that spraying can be done during a period during which the pest is susceptible to pesticides. I wish to have the daily briefing feature for all pests that I deal with. 

Agrio should conduct research on new methods of pest controls and communicate it with the users in the form of tutorials. 

We live in an era of technological progress. Continuous research helps you find new methods of controlling pests that save time and money, reduce insecticide exposure to fruits and improve results. 

How the satellite scanning changes the way you understand the orchard situation and practice plant protection? 

Satellite scans decreased the load of inspection and they help in eliminating many differential diagnoses and narrowing down suspected causes, they help in understanding which part of the orchard is growing during a specific period. They indicate nutrient deficiency by showing homogenous fall when fertigation is delayed. They allow to demarcate the hotspot zones and monitor them periodically. They also allow the detection of the origin of pest infestation. 

I think that a satellite scan is a non-specific modality, a satellite scan followed by inspection helps to make out what the problem is. I hope to see the progress that can make satellite scans more specific in the future. 

But in spite of its limitations it helps a lot in understanding the orchard situation, it helps farmers to divide orchards into pest zones and non-pest zones and make a spray in pest zones, and it helps to detect differential growth of trees in different areas and detect defects in areas with low growth. 

Can you describe a particular case in which Agrio helped you detect a pest or a disease and protect your plants? 

Nematode infestation was detected on a few plants through satellite scan that showed a decline in that area, then photos of plants in that area were uploaded with the smartphone camera by us, then inspection of the roots was suggested, nodules were detected on roots, and nematode infestation was identified. 

The satellite scan help to localize areas where mealybug is present on leaves of plants based on differential decline shown by infested area, so that geotagged photos can be taken in that area and the pest zone can be demarcated then spraying can be done in that area, this reduces the amount of exposure of plants to pesticides as spraying will be done only in an infested area, this also reduces the cost of spraying. 

Does the app help you with coordinating the operations on the farm? Please describe how it works.

The app has excellent features that can help teammates to coordinate and get work done perfectly. It has a feature of taking geotagged photos, an inspector can take photos in places of infestation so that teammates can make sure treatment is done there and can monitor its progress. It has a chat where daily work can be communicated. This helps in coordinating irrespective of different working hours. The feature of the intervention calendar helps in maintaining records of it and the information is accessible to all teammates. Sometimes you get excellent results but you forget the things that were done and the pesticides that were used. The satellite scans and intervention helps to recall and review the results of interventions. 

What is the dynamic in the community of growers in your region? What is the level of interest in precision agriculture solutions? Do you see how area-wide integrated pest management can be applied with the aid of technology to the benefit of the whole community?

Most of the guava growers here grow native variety which has a short shelf life on trees as well as post-harvest. Bagging is not economical so they frequently suffer from fruit fly losses. Most of the Taiwan guava growers are 500 km away from here, they are also bagging fruits to produce first-quality fruit as suggested by local experts. In other crops, the majority of farmers are uneducated and depend on plant protection advice from either pesticide shop owners or the horticulture department. 

Area-wide management can help to detect pests at an early stage when the population is low, this reduces the spraying of pesticides in adjacent fields, and many of the infestations can be prevented.  An individual farmer will suffer many challenges, but communication and cooperation between farmers of an area can make huge changes and provide profitable crops. 

Who are your produce buyers? Tell us about your marketing challenges. What do you wish for in the future?

Brokers in the main market of Hyderabad buy our produce, today due to the pandemic many countries are in debt, and people’s economic situation is worsening. Due to this buying fruits became secondary to low class and lower middle class, which led to a decrease in demand and a fall in prices. 

Due to urbanization many big markets of the city are getting shifted to the outskirts, and there is an increase in the travel costs of the city vendors to the market, so many workers are finding it difficult to carry this profession, these are leading to a decrease in consumption and further fall of prices. 

Regional markets should be established within the city according to the consumption and supply should be made accordingly to decrease cost price to vendors. Minimum rates should be fixed to the quality categories of fruits so that farmers will not be losing in any season. Farmers should also be able to sell their produce on online platforms where they can get fair prices. But to achieve that they should be producing them in huge quantities. 

Anything else that you would like to add?

For many years farmers have been at a great loss due to unseasonal rains and lack of evidence-based suggestions by local agriculture experts, using technology and proper planning should bring good results in the future. Failure is an opportunity to begin again more Intelligently.


Protecting cannabis plants with the help of beneficial insects

Beneficial insects are a natural and safe form of pest control. They are a great alternative to pesticides and they are not harmful to the environment. The use of beneficial insects is becoming more popular in the face of pesticide resistance and growing public concern about the risks associated with chemical pest control. A number of factors must be considered when selecting beneficial insects for release into a particular environment: the type or species of insect; their life cycle; how fast they multiply in numbers; whether they are native to that area or not; where they will live in the environment; what they will feed on and more. The use of beneficial insects is becoming more common in the cannabis industry as it has been proven to be a sustainable way to decrease the use of pesticides while still maintaining the desired level of quality for the product.

In the following, we review the common insect pests that affect cannabis and the beneficial insects that can come to the rescue.


Aphids are small polyphagous (0.5-5 mm), sap-sucking insects that come in various colors and shapes. Most aphids don’t have wings, but the ones that do range in colors from black, green, pink, yellow, etc. Aphids are one of the most widely distributed pests in the world.

Feeding can cause stunting and plant/leaf deformities such as curling, while honeydew secretions are a “fertile ground” and a major contributor to the development of sooty mold fungi that in turn can lead to a decrease in photosynthesis.

Aphids are a major vector for dozens of viruses. That alone is enough to put aphids at the top of the most globally, economically hazardous list for crops.

Aphids on cannabis leaf
Aphids on cannabis leaf


aphidius colemani

This parasitic wasp is part of the family Braconidae and feeds on several species of aphids, including the peach aphid and the pumpkin aphid. The adult wasp is thin with black, brown, and yellow colors in its different body parts.

It is sensitive to high temperatures and its optimum temperature range happens to be 20-30 degrees Celsius. It lays a single egg inside the aphid’s body. The hatched larva feeds on the internal tissues of the aphid. The aphid becomes a «mummy» with a swollen, brown appearance.


Considered to be soft scale insects, mealybugs derived their name from their appearance. Usually, mealybugs are covered with a sticky wax floury or cornmeal-like whitish powder. Some species reproduce sexually, while others are parthenogenic. Mealybugs may be oviparous, viviparous, or ovoviviparous. Their eggs are usually laid in loose masses of cottony wax ovisacs. The flowering and fruiting phases of plants help support a larger mealybug population.

They feed on the phloem by sucking sap from plants. Symptoms appear as small white patches on stems and fruits, followed by the formation of honeydew and the development of sooty mold near infected areas. Mealybugs are known for their ability to transmit plant viruses and can cause heavy losses.


Anagyrus pseudococci

A parasite that lays a single egg into the mealybug body. The larva that hatches from the egg feeds on the mealybug body and mummified it.

Cryptolaemus montrouzieri

Coccinellid predator that reaches 4 mm long in its adult form; The insect color is dark brown with an orange abdomen. Young larvae prefer mealybugs eggs and larvae, while adults feed on all stages of the pest without preference.

The optimal conditions for its development are 26 Celsius and 60% humidity.

Red spider mites

Red spider mites are small arthropods that are classified as Arachnida and members of the Tetranychidae family, along with hundreds of different species. They are distributed worldwide and considered a persistent concern for farmers in warm, arid, and dry weather regions.

When weather conditions are right, a female is able to lay up to seven eggs a day and will do so on the underside of leaves. Adults feed upon plant tissues leaving yellowish nourishing marks. 

Red mite presence in fields could go unnoticed until infestation reaches a critical point in which damage to plants is clearly visible. 


Amblyseius swirskii

This particular predatory mite belongs to the Phytoseiidae family. It’s known as the swirskii mite and is a general carnivorous critter that consumes pollen from flowers, as well as Western flower thrips, whiteflies, and red mites.

The mite color can be white, white-yellow, and even light orange. Its color depends on the color of its prey.

The optimum for its development is 25-28 degrees Celsius; The duration of development from egg to adult at a temperature of 26 degrees Celsius lasts about 5-6 days.

Phytoseinulus perssimilis

The Presimilis mite, belonging to the Phytoseiidae family of predators, preys on other mites and small insects. These predatory mites can act as a natural way to keep certain pests in check and are especially effective due to their specificity.

Females are pear-shaped. They have a red-orange hue and with their long front legs and rapid movement can capture red mites with ease. The pest feeds on red mites in all growth stages, with a preference for eggs.

The optimal conditions for their development are 21-28 degrees Celsius and a humidity of 60%. In optimal conditions, the pest completes its life cycle within a week.


Leafminers are insects belonging to different orders: sawflies belong to hymenoptora, flies belong to the order of diptera, and moths that belong to the order lepidoptera. Together, they form a large group of plant pests that are important to cultural crops around the world.

Feeding patterns are important in helping identify the genus and the species, and it is quite characteristic. Leafminers are year-long pests that favor warm environments.

The first signs of infestation are tiny yellow dots upon leaves’ upper surfaces. The spots depict where the female laid her eggs. A week after, maggots begin eating their way inside the leaf tissue thus creating those complex tunnels we recognize so easily. The tunnel provides sufficient living conditions for the larvae. In the following 10 days, the tunnel gets wider and longer. Eventually, maggots pop out and fall to the ground where they’ll complete their metamorphosis and turn into a fly after another 10 days.

Its larvae stage is the one responsible for the actual damage. In a large enough population, it can cause a significant drop in yields due to sabotaging photosynthesis.

Leafminer damages on cannabis leaf
Leafminer damages on cannabis leaf


Diglyphus isaea

The parasitic wasp Diglyphus belongs to the family Eulophidae. a natural enemy of dipteran leafminers and a successful commercially available biological product against leafminers.

Diglyphus acts as an external parasite and lays eggs outside the host’s body. The adult is small, and is black in color with a metallic green sheen, protruding from its surface.

The female injects the leafminer maggot with paralyzing fluid before laying eggs and depositing them close to its body. The maggot stays paralyzed for two weeks and the larvae that hatch from the egg (after two days) feed on the pest. The adult female is nourished by the body fluids of the pest maggots as well.

At an optimal temperature of 20-25 degrees Celsius the graduates are able to live up to 30 days.


Bemisia tabaci, also known as whitefly, is a multi-host with considerable differences that exist in appearance between adult and nymph stages. Females can lay dozens of eggs, usually on the underside of leaves. Nymphs feed by stabbing into the plant with their mouth parts, sucking up sap from the phloem, and excreting honeydew (a sugar-rich substrate that promotes the growth of sooty mold.) The adults are white and capable of flying, hence the name.

Damage to hosts is caused directly by feeding and indirectly by honeydew. However, their ability to spread viruses has the greatest economic impact. Whitefly vector plant viruses like Begomoviruses, which is a group of plant viruses such as TYLCV in tomatoes and CYSDV in cucurbits. Whiteflies transmit Begomoviruses to host plants.


Macrolophus pygmaeus

This light green insect is a predator of small arthropods. It is considered an effective predator of whiteflies and tuta absoluta but also feeds on eggs of the whiteflies, thrips, mites, and aphids.

Amblyseius swirskii

Refer to the sections above.

Western Flower Thrips

Western flower thrips are small, polyphagous insects (adults are 1.2 mm in length). They are a major pest in the world of agriculture with several hundred different host plants. They can usually be found on the upper parts of plants, especially inside the flowers, where they feed on pollen. Western flower thrips undergo partial metamorphosis, developing through several distinct stages, including egg, larva, pupa and adult-which can fly only weekly.

They can cause damage to crops directly as a result of feeding or laying eggs in the plant’s tissue and indirect damage from the role it plays as a vector of viruses.

Thrips damages to cannabis leaves
Thrips damages to cannabis leaves


Orius laevigatus

The carnivorous flea Orius is a relatively small insect that belongs to the family Anthocoridae.

It feeds mainly on insects, but also on plants. When feeding on plants, it feeds on the sap and pollen, without harming the plant. Pests such as western flower thrips, whiteflies, and red mites are its source of prey. At an optimal temperature of 25 Celcius, the flea completes its development from egg to adult within 16-18 days and can live up to a month. Luckily, at all stages of development, it can devour pests.

Macrolophus pygmaeus

Refer to the sections above.

Further considerations

When the infestation is getting out of control chemical insecticides might be required. On such occasions, there is a need to select pesticides that are not harmful to the beneficial insects. The Agrio app can help you to choose the right product.


Integrated pest management is the approach of combining methods that work better together than separately. It allows diseases and pests to be controlled by managing the ecosystem, which results in long-term pest control that is less risky to farmers and the environment. IPM is an environmentally sound approach that has been shown to reduce pesticide use by 80% or more compared with conventional pest control approaches. We look forward to seeing you leveraging this information for intelligent and effective pest management in your growing areas. 

In the meantime, as always, we wish you an abundant harvest.


Satellites with red-edge sensors help to detect plant stress early

In the effort to grow better food farmers and crop advisors want to have a better understanding of the condition of their crops in real-time. Such information can allow them to detect plant stress early before damages are becoming substantial.

Remote sensing is a new revolutionary approach that can help to accomplish that. It is an affordable way to identify plant diseases and other problems early on, which can then be treated before the problem spreads and damages the entire crop. Remote sensing leads to more efficient food production, which in turn helps to increase crop yield and decrease hunger worldwide.

It is well known by now that the visible spectrum can be limiting when it comes to the early detection of plant stress. When you scout your plants you might not be aware of the symptoms that are already developing. These symptoms might be presented in the field but not yet visible as symptoms that are visible to the naked eye. Hyperspectral imaging can solve this problem, as it is shown to have promise in the early detection of plant stress. It was demonstrated that the symptoms of stressed plants show in some spectral regions before they can be seen in the visible spectrum.

The red-edge spectrum and early plant stress detection

One of the interesting spectral regions is the red-edge. This is the region that shows a large sharp rise in the plant absorption of light. This region is characterized by electric waves with wavelengths between 700 to 800 nm. The sharp incline in the graph is due to the contrast between the strong absorption of chlorophyll and the otherwise reflective leaf. This spectral region is proving to be the most sensitive to disease symptoms and could serve as a leading indicator when it comes to detecting plant stress early.

This led to the increasing number of satellites that were sent to space that carry sensors that are sensitive to these wavelengths. Moreover, there is an increasing amount of research effort that deals with the classification of healthy and infested plants based on spectral signatures in the red edge spectral region. In recent years there is an increasing amount of evidence that shows that the red-edge shows signs of a problem before the condition is detectable with traditional vegetative indices or the naked eye.

Typical plant light reflectance
Typical plant light reflectance

Satellites with red-edge sensors

Some of the satellites that carry red-edge sensitive sensors are the Sentinel-2 and PlantScope constellations. Sentinel-2 has spectral channels with different spatial resolutions, including three 20 m resolution red-edge bands at 705 nm, 740 nm, and 783 nm. Planetscope satellites provide 8-band including 3 m resolution with red-edge sensitivity at 733 – 748 nm.

What makes the red-edge region interesting for analysis?

Studies show that the ratio of reflectances at 750 nm to that near 700 nm is directly proportional to the chlorophyll concentration in the leaves. Chlorophyll plays a crucial role in the photosynthetic processes such as light-harvesting, and thus the content of chlorophyll is a potential indicator of a range of stresses. Moreover, it was shown that red-edge absorption analysis can indicate a problem before the actual reduction in the chlorophyll can be observed. The chlorophyll functioning changes can be detected by the red-edge analysis early on. This precedes the actual losses in leaf chlorophyll concentrations and therefore monitoring such changes can act as an early indicator for the development of biotic and abiotic stress.

Another advantage of analyzing this spectral region is the invariance of the results to changing environmental conditions. The absorption and reflectance of the waves are less sensitive to soil background and atmospheric effects.

Some examples of diseases that their monitoring was studied with this approach are late blight in potato and rice panicle blast.

Healthy vs stressed plant reflection in the red-edge spectral region
Healthy vs stressed plant reflection in the red-edge spectral region

Leveraging artificial intelligence to detect anomalies in satellite imagery

After discussing the benefits that can result from monitoring the red-edge reflectance we need to deal with the question of the practicality of this approach. One of the challenges in leveraging spectral analysis in stress detection is to identify the precise patterns in the satellite scans that indicate that the plants are under stress. The use of artificial intelligence in agriculture has been on the rise due to the recent advancements in technology and contributes to the efforts to overcome these challenges. Anomalies are detected using artificial intelligence by making decisions that are based on patterns that were learned from large training datasets.

The progress in the development of early detection tools can become faster once a large volume of high-quality data can be collected in an affordable way. To achieve that we took the crowdsourcing approach and built a tool that allows growers to identify plant pathology based on smartphone captured images. Growers are directly benefiting from this service while helping to train algorithms for early detection, a capability that can be more beneficial for them in the long term. The geotagged images are used as ground truth and help us to train the algorithms to identify the problems directly from the satellite scan. The computer is presented with satellites scans in which it is known which of the field regions are diseased. We make fast progress as we are able to collect a large volume of high-quality data.

Monitor fields with the Agrio smartphone application
Monitor fields with the Agrio smartphone application

Such data allow us to learn the patterns of the typical reflectance patterns of a large number of different plant problems. We leverage these capabilities to develop easy-to-use monitoring solutions. Farmers that are using Agrio can monitor the health of their fields in a very simple way. All that is needed is to define the field location by drawing a polygon that represents the field boundary. Once this is done we are kicking in to do constant monitoring for you, and notify you when a new scan is available.

On our platform, users can get access to Sentinel and PlanetScope satellite scans. We apply our algorithm to the imagery to monitor crop progress, spot problems in the field, and alert growers when interventions are needed.

We invite you to leverage these capabilities to avoid losses, grow better, and spray less.


Monitoreo remoto de los campos de maíz durante las etapas cruciales de la reproducción

La fase de floracion del maíz es la etapa reproductiva del maíz en la que las espigas, situadas en la parte superior de la planta, producen polen. La fase de floracion  es importante tanto para el rendimiento como para la calidad del maíz, por lo que se debe prestar una atención especial hacia que las plantas estén en condiciones óptimas en esta fase.

A pesar de que el tamaño potencial de la mazorca ya está determinado durante la fase de crecimiento anterior, lo que ocurre durante este periodo determina la capacidad de la planta para expresar el potencial de rendimiento. Cuanta más polinización se produzca, mejor será el rendimiento final.

La fase de floracion del maíz

¿Cómo pueden ayudar las imágenes por satélite a los agricultores?

La capacidad de supervisar el progreso de los cultivos y detectar problemas en el campo antes de que los síntomas sean evidentes es crucial para el éxito de la cosecha. Los emocionantes avances tecnológicos nos permiten captar imágenes de las granjas agrícolas de todo el mundo con la ayuda de satélites, lo que hace que el seguimiento sea sencillo y accesible.

En la fase de floracion , el cultivo es vulnerable a las infestaciones de insectos y a los brotes de enfermedades. Esta fase dura entre 10 y 14 días y es crucial vigilar el cultivo durante este tiempo. Con la ayuda de la  monitorización a distancia, podemos identificar la transición a la fase de floracion  con gran precisión. La precisión del análisis es muy alta si utilizamos satélites que visitan los campos a diario, ya que podemos proporcionar la identificación de la transición de fase con pocos días de retraso.

Para supervisar la transición de fase, controlamos el índice de área foliar (LAI). El LAI es una medida de la superficie de las hojas por unidad de superficie del suelo. La predicción de la floracion  del maíz basada en el índice de área foliar es una técnica que utiliza las mediciones del LAI para estimar cuándo el maíz entrará en su fase reproductiva. El seguimiento del índice de superficie foliar con satélites es una forma nueva e innovadora de vigilar la vegetación. Es una alternativa a los métodos tradicionales de seguimiento de la vegetación con mediciones en tierra.

Identificación de la etapa reproductiva basada en monitoreo satelital

Una vez identificada la transición de fase, utilizamos el escaneo satelital para monitorear la salud de la planta. En la fase de floracion , resulta crucial inspeccionar la salud de las plantas muy de cerca. Cualquier estrés en esta fase provocará pérdidas irreversibles, por lo que es importante reaccionar con rapidez. Una alta frecuencia de las visitas de los satélites es esencial. Con los satélites que vigilan los campos a diario, los agricultores pueden identificar los problemas en los campos con mucha antelación y evitar su propagación. La resolución espacial también es importante, y con una resolución de escaneo de 3 metros, podemos tener una mejor capacidad para observar pequeños cambios en los indicadores de salud de las plantas.

Los agricultores que utilizan Agrio pueden supervisar la salud de sus campos de forma muy sencilla. Todo lo que se necesita es definir la ubicación del campo dibujando un polígono que represente el límite del campo. Una vez hecho esto, nos encargamos de hacer un seguimiento constante por usted y le notificamos cuando hay un nuevo análisis disponible.

En nuestra plataforma, puede acceder a los escaneos satelitales Sentinel y Planet scope. Con Sentinel podemos proporcionar escaneos de 10 metros de resolución con una frecuencia de revisita de 3 a 5 días. PlanetScope es una de las constelaciones de satélites operadas por Planet. Con revisitas diarias y una resolución de 3 metros, podemos hacer frente mejor a las interferencias de las nubes y seguir más de cerca los cambios en los campos. Aplicamos nuestro algoritmo a las imágenes para supervisar el progreso de los cultivos, detectar problemas en el campo y alertar a los agricultores cuando es necesario intervenir.

Cuando se detecta un problema en el escaneo, es importante ir a inspeccionar las plantas. A continuación, ofrecemos un resumen de los principales problemas que los cultivadores y asesores de cultivos pueden esperar ver en la fase reproductiva.

Gusano de raíz del maíz

Las larvas del gusano de la raíz del maíz (Diabrotica balteata, Diabrotica undecimpunctata, Acalymma trivittatum, Diabrotica undecimpunctata howardi) que se han estado alimentando de las raíces del maíz emergerán como adultos durante el periodo que va desde la floracion, masculina y femenina hasta la polinización. El control infructuoso de esta plaga puede dar lugar a un mal llenado del grano. La mosca tachínida parásita Celatoria diabroticae es una buena opción de control biológico.

Gusano de raíz del maíz

Gusano ejército de otoño

El cogollero puede causar daños importantes en los cultivos y debe tratarse durante el periodo de «llenado de grano». Las plantas débiles tienden a ser eliminadas por las orugas antes que las plantas más grandes y sanas. Si ve 3-4 o más orugas por planta, puede ser una buena idea rociar insecticidas para que sus cultivos puedan alcanzar todo su potencial.

Prefiera plantar variedades de plantas transgénicas conocidas como variedades Bt, que tienen una buena resistencia contra esta plaga. Mantenga aseado el entorno cercano de los cultivos eliminando las malas hierbas, los restos de plantas, las partes dañadas, el crecimiento de plantas no deseadas y las plantas cercanas que no estén cultivadas ni protegidas.

Gusano ejército de otoño

El Taladro del maíz

El Taladro del maíz pasa el invierno como una larva completamente desarrollada en los tallos de maíz y en las malas hierbas. Existe una importante interacción entre el barrenador europeo del maíz y la antracnosis. Cuando ambos están presentes, pueden producirse graves daños en el tallo y el encamado. Dada la gravedad de los daños, puede ser una buena idea cosechar las plantas pronto. De este modo, se limitará el riesgo de que se produzcan rendimientos bajos debido a que las plantas sean invadidas.

El Taladro del maíz


Roya, como su nombre indica, produce síntomas de color amarillo a marrón anaranjado o de color óxido en la parte superior e inferior de las hojas infectadas. Los síntomas no suelen aparecer hasta después de la brotación. La enfermedad está causada por el hongo Puccinia sorghi y sus esporas se dispersan fácilmente por el viento, lo que las sitúa entre los patógenos vegetales más móviles del mundo.


Tizón de la hoja de maíz del norte, NCLB

Tizón de la hoja de maíz del norte es una enfermedad fúngica que suele aparecer en los lugares en los que se cultiva el maíz año tras año en el mismo campo, especialmente en los lugares en los que hay un laboreo reducido. El NCLB favorece las condiciones de alta humedad, pero tiene dificultades para desarrollarse en temperaturas extremas, como las temperaturas muy frías y cálidas.

Los síntomas elípticos, en forma de «cigarro», aparecen primero en las hojas inferiores y van subiendo por las hojas a medida que pasa el tiempo. Se esperan graves pérdidas de rendimiento cuando los brotes se producen antes de la fase de sedimentación.

El NLCB permanece latente en las partes infectadas de la planta hasta que las condiciones meteorológicas son favorables. El NCLB infecta al maíz recién plantado a través de las salpicaduras de agua. La preparación del terreno con prácticas de labranza y la eliminación de los residuos de maíz de la temporada anterior son esenciales para la prevención. La presencia de agua estancada favorecerá la propagación del NCLB. Haga un esfuerzo y mejore las zonas del campo donde el agua tiende a acumularse y formar charcos. Si es posible, cubra el terreno con láminas de polietileno para reducir la evaporación del agua del suelo.

Tizón de la hoja de maíz del norte, NCLB

Mancha de la hoja

La mancha de la hoja es una enfermedad micótica causada por el hongo Aureobasidium zeae. El patógeno pasa el invierno en los residuos del maíz, por lo que es habitual limpiar el campo después de la cosecha. El tratamiento rara vez está justificado para la mancha de ojo en el maíz.

Mancha de la hoja

Carbón de penacho

El carbón de penacho está causado por el hongo Sphacelotheca reiliana. Al explorar el terreno, busque espigas y borlas que hayan sido sustituidas por soros de tizón llenos de teliosporas.

Esta enfermedad fúngica puede ser común en ciertas zonas. Se aconseja tratar las semillas con fungicidas en estos casos.


La antracnosis del maíz es una enfermedad foliar que puede ser común en los campos si no se han dejado restos de maíz del año anterior. Las manchas foliares suelen aparecer en las hojas inferiores durante el tiempo húmedo y nublado. Los síntomas, que al principio se pasan fácilmente por alto, pueden parecer pequeñas manchas de agua ovaladas/alargadas en las hojas. Las manchas se vuelven de color bronceado con bordes de color naranja claro a rojo. Estas manchas se unen y causan la plaga en las hojas. También puede observar círculos de pequeños puntos negros en el centro de las manchas tiznadas: son cuerpos fructíferos del hongo. Este hongo también puede causar una grave muerte de la parte superior y la pudrición del tallo.

Otras cosas que hay que tener en cuenta en la exploración

  • Compruebe si hay deficiencias de nitrógeno y potasio observando las hojas inferiores de las plantas.
  • Las plantas pueden adquirir un color púrpura si la polinización o la formación de granos no han tenido éxito.
  • Las condiciones de sequía pueden hacer que las plantas florezcan antes de lo esperado. Además, estas condiciones pueden provocar un retraso en la aparición de la seda. En la medida de lo posible, se debe regar la planta. La escasa antesis o la pérdida de polen son otros síntomas de estrés por sequía.


Destacamos la importancia de la vigilancia de los cultivos durante la fase de floracion. El seguimiento de los campos con satélites puede simplificarnos la vida, ya que puede ayudarnos a identificar las enfermedades que están afectando a los campos de maíz y las deficiencias de nutrientes en ellos. Esto nos ayudará a identificar las zonas en las que debemos tomar medidas de prevención. Los satélites también pueden utilizarse para vigilar un gran número de campos, lo que no es posible con la vigilancia manual. Esto nos permitirá obtener alertas tempranas y ubicaciones exactas de cualquier problema potencial.


Integrated pest management in stone fruit trees in early spring

Integrated pest management is a strategy that farmers can use to combat pests and diseases in their crops. This strategy has been used for many years and is still an effective way to manage pests. In the early 1990s, integrated pest management (IPM) was first introduced in stone fruit trees. It has been used ever since as a way to control the spread of pests and diseases in these types of trees. Farmers have found this method more cost-effective than other methods on the market today.

This article will cover some of the important aspects of Integrated pest management in stone fruit trees and how it can be used to improve productivity and reduce pesticide usage.

Wilsonomyces carpophilus

During the rainy winter months, the fungus attacks the dormant buds and a resin secretion is seen as a result.

The symptoms on the fruit and leaves begin as reddish spots that on the leaves soon become necrotic and dehydrated. Due to this, the inner part of the spot falls, leaving a perforated appearance (shot hole). Young green branches are affected by the disease and develop cankers. Fruits can become deformed.

Remove as much infected plant tissue as possible during the summer. At the beginning of fall, before rains start, spray with a Bordeaux mixture or copper-based fungicide. Repeat application in the spring before and during bloom. Dithianon-based fungicides can be used during the season before rain events.

Shot hole disease
Shot hole disease


The damage can be seen on the branches in the form of gummosis. Prevention should focus on keeping stress factors low and spraying with preventative fungicides after pruning or tissue injuries.


A fungal disease that causes defoliation and decreases the fruit yield as a result. In the end of each season remove all the affected leaves and clean the orchard. During the spring, preventative fungicides applications are needed if the humidity reaches high levels. Tebuconazole, Myclobutanil, and Cyproconazole can be considered. Applications should be continued in 2-3 weeks intervals until the middle of the summer.

Rust symptoms on peach leaf
Rust symptoms on peach leaf

Powdery mildew

Preventative spraying applications should be focused on protecting the fruits. Therefore, such applications should be performed right after the pollination and until the fruit kernel hardens. After that protect the foliage by removing plant parts that are highly affected and apply fungicides.

Powdery mildew symptoms on peach fruits
Powdery mildew symptoms on peach fruits

Peach leaf curl

This disease is caused by the fungus Taphrina deformans and affects peach, plum, nectarine, and almond trees. Peaches are the most susceptible crop and hence the name. The pathogen can be found on the host’s branches, buds, and bark. It can survive harsh weather conditions, withstanding summer’s high temperatures and prolonged dryness. At the end of a dormancy period, the fungus activity extends due to significant wetting events. As the weather changes and the flower buds swell, water splashes from irrigation or rain and cause fungus spores to reach the buds. That’s where the infection takes place, despite the fact that no green tissue is present. After the pathogen enters the host, it stimulates cells, which leads to abnormal growth. Visual symptoms first appear as reddish areas on newly emerged leaves. With time, swelling and leaf distortion cause fungus spores to break outside, release into the air, and infect new tissues. As the disease progresses, leaves may fall and be replaced by a new set of healthier leaves if a period of low humidity is present during their development. The loss of leaves during springtime results in decreased fruit production, and defoliation, and could expose branches to sunburn.

Control of peach leaf curl disease revolves around prevention through the use of chemical treatments. Broadly speaking, it is fairly common to perform two spraying treatments that are timed with respect to the physiological phase of growth. It is advised that the first treatment is implemented before buds swell, and the second treatment is implemented closer to the bud swelling process. Dithianon, captan, a copper-based fungicide, and bordeaux mix.

Peach leaf curl
Peach leaf curl

Peach twig borer

Anarsia lineatella (the peach twig borer) overwinters on the tree and the larvae emerge in the early spring. The larvae crawl out of hiding with the swelling of the buds. The pest attack flowers, leaves, and shoots. Later generations feed on fruits as well. It is difficult to monitor for it as it is found mainly in the upper third of the tree. Look for flag leaf withering as a sign of the pest presence. Remove such affected branches to lower the pest population.

At the beginning of the spring Install pheromone traps and check them weekly. Once the peach twig borer moth was captured trigger the biofix and follow the growing degree days model. The Agrio app will monitor the progress of the pest life cycle for you. Treatment should be aimed at the larvae. The monitoring of the emergence of the pest generations will help you time the Bacillus thuringiensis and spinosad insecticides optimally.

Almond bark beetle

Weak and degenerate trees, twigs that have dried up as well as trees that have withstood water should be inspected during the scouting. The beetle, in its various degrees, will be found in the woody parts that were recently dried. Look for rubber secretions as evidence of the presence of the pest. To make monitoring more robust, use pheromone traps to capture the adults. Remove and destroy all the infected wood in order to limit the spread.

Olive scale

Start monitoring after the oil spraying is done. Monitor trees that were infested in the previous season. Apply Neonicotinoid-based insecticides when 70% percent of the eggs were already laid. It is important to remember that repetitive usage of the same insecticides can cause resistance development among the pests and therefore under-optimal results.

European grapevine moth

The European grapevine moth (Lobesia botrana) feeds on the fruit. Look carefully in places in which it is hidden and protected such as under the leaves that cover the fruit. Use pheromone traps to monitor the pest presence more carefully.


Integrated pest management in stone fruit trees is a way of managing pests and diseases. It involves the use of early detection, preventative measures, and treatment methods to reduce the risk of pests and diseases. IPM is a cost-effective and sustainable pest control strategy that involves monitoring for pests, using pesticides only when necessary, and using natural predators to control the population of pests.

Caution and careful notice should be taken when using any plant protection products (insecticides, fungicides, and herbicides). It is the grower’s sole responsibility to keep track of the legal uses and permissions with respect to the laws in their country and destination markets. Always read the instructions written on labels, and in a case of contradiction, work in accordance with the product label. Keep in mind that information is written on the label usually applies to local markets. Pest control products intended for organic farming are generally considered to be less effective in comparison to conventional products. When dealing with organic, biological, and to some extent, a small number of conventional chemical products, complete eradication of a pest or disease will often require several iterations of a specific treatment or combination of treatments.


Integrated pest management in apple orchards in early spring

Pests are one of the biggest threats to apple orchards because they can cause a lot of damage in a short period of time. As such, it is important that farmers keep an eye out for any pests so they can take preventative measures before it becomes too late. In order to maintain the health of an orchard, it is necessary to have a pest management plan in place. A good plan in apple orchards will include integrated pest management (IPM) practices, which include monitoring pests, taking preventative measures, and early detection.

Growers should monitor pests such as apple maggot flies, pear psylla, and codling moth. These insects can be monitored by looking for their larva in the soil around the trees or by looking for their damage to the trees themselves. Monitor these insects every week throughout the growing season to determine which pest has the most negative impact on your orchard.

Two important fungal diseases that should be considered are powdery mildew and apple scab.

Powdery mildew

Remove as much of the infested branches before the orchard is waking up. Start monitoring before bloom. The first treatment can be combined with spraying against apple scab. Applications should be repeated every 7-14 days until the end of the growth.

Powdery mildew of apple
Powdery mildew of apple

Apple scab

The disease is caused by the fungus Venturia inaequalis. When bloom starts, inspect the leaves and fruits and look for dark powder stains. Combine systematic fungicides such as Difenoconazole with contact fungicides such as mancozeb. Make sure that the spraying is applied especially before rains. Contact fungicides can be applied right after the end of the rains.

To protect the crop from damages caused by pest insects pay attention to the following insects: Codlig moth (Cydia pomonella), San Jose scale, Leopard moth (Zeuzera pyrina), Almond bark beetle (Scolytus amygdali), Olive scale (Parlatoria oleae), and European red mite (Panonychus ulmi).

Apple scab
Apple scab

Codling moth

Codling moth larvae are one of the most destructive pests. Although it can attack various fruits, it mainly damages apples. This is the main pest of apples and needs to be managed in each orchard. Orchards should be scouted twice a week early in the season and once a week later on.

Use pheromone traps to attract male moths. Traps are made of plastic to create a passage and the bait is placed inside. The inner surface of the bottom is coated with a sticky material to hold insects when they fall into the trap. The traps are hung in on the tree at eye level, one for every two acres of trees. It should be installed before the pink stage of apple bud development and checked every day. A total of five moths captured in the trap is the threshold to set the biofix, this is the day in which growing degree days should start counted. Use the Agrio app to time the insecticide applications accurately.

Codling moth
Codling moth

San Jose scale

Install pheromone traps and sticky tapes before blooming begins. The pheromone traps should be located in the canopy, protected from the wind. Lures should be replaced monthly. Monitor these traps regularly looking for adult males. Once males are captured set the biofix date to start tracking the crawlers emergence. Apply treatment aimed at crawlers. Make sure that the spraying covers the entire tree. Reinstalll the traps to track the emergence of following generations.

Olive scale

Start monitoring after the oil spraying is done. Monitor trees that were infested in the previous season. Apply Neonicotinoid-based insecticides when 70% percent of the eggs were already laid. It is important to remember that repetitive usage of the same insecticides can cause resistance development among the pests and therefore under-optimal results.

Leopard moth

The larvae burrow in the wood skeleton and cause degeneration and destruction of the wood. Identify active burrows and pull the larvae out with a thin steel wire. The sawdust should be scattered under the tree to allow identification in the case of renewed activity. Traps can be used to capture the female moth. Traps with pheromone should be hanged near wooded areas. Install sexual disruption as it is very effective against this moth.

Almond bark beetle

Weak and degenerate trees, twigs that have dried up as well as trees that have withstood water should be inspected during the scouting. The beetle, in its various degrees, will be found in the woody parts that were recently dried. Look for rubber secretions as evidence of the presence of the pest. To make monitoring more robust, use pheromone traps to capture the adults. Remove and destroy all the infected wood in order to limit the spread.


Integrated pest management in apple orchards is a way of managing pests and diseases. It involves the use of early detection, preventative measures, and treatment methods to reduce the risk of pests and diseases. Integrated pest management in apple orchards is a cost-effective and sustainable pest control strategy that involves monitoring for pests, using pesticides only when necessary, and using natural predators to control the population of pests.


Lo que Todo Agricultor debe Saber sobre las Consideraciones Meteorológicas relativas a los Pesticidas

La importancia del clima en la aplicación de pesticidas

El tiempo para controlar las plagas y enfermedades de las plantas es limitado. Como la oportunidad de tiempo puede ser aún más corta debido a un mal clima, como resultado, los aplicadores tienen que ser capaces de identificar y planificar. El clima desempeña un papel muy importante en el momento de aplicar los pesticidas. Puede influir significativamente en la cantidad de pesticidas que se rocían, en su eficacia y en el riesgo de causarle daños a las plantas y al medio ambiente.

Los 4 factores climáticos clave para el éxito de la aplicación de pesticidas

Los cuatro factores clave que afectan al clima y a los pesticidas son la temperatura, el viento, las lluvias y la humedad. Las peores condiciones climáticas para la aplicación son el viento fuerte, la temperatura alta, la lluvia intensa y la humedad baja. El viento es un factor crucial porque afecta a la forma en que los pesticidas se desplazan por el aire; el viento puede transportar los pesticidas agrícolas muy lejos de donde fueron rociados, haciendo que se desvíen hacia la propiedad de otras personas. Esto disminuye la eficacia de la aplicación y aumenta el riesgo de contaminar el medio ambiente y perjudicar a las personas que viven en las zonas cercanas. Por ello, los agricultores deben tener en cuenta la dirección y la velocidad del viento al rociar sus campos con pesticidas agrícolas.

Las lluvias y la humedad también pueden cambiar la distribución de los pesticidas, pero su efecto es menor que el del viento. Las temperaturas del aire y de las superficies son factores importantes para la eficacia de los pesticidas. Los diferentes compuestos químicos tienen diferentes rangos de temperatura en los que son más eficaces. Por ejemplo, el insecticida piretroide es más eficaz a temperaturas superiores a 50°F.

No se recomienda fumigar los pesticidas en el exterior cuando hay más riesgo de que se produzca una elevada tasa de evaporación, degradación y prolongación de la vida útil de las gotas. La degradación de los pesticidas puede aumentar cuando la humedad es alta. La alta humedad también disminuye la evaporación, lo que da lugar a una mayor duración de las gotas y a un mayor riesgo de dispersión. Estos factores también desempeñan un papel esencial en la seguridad. Una mayor concentración de pesticidas en el aire puede suponer un riesgo potencial para la salud de los trabajadores y de los residentes cercanos. Algunos pesticidas son más sensibles a los cambios de temperatura que otros. En climas cálidos, la humedad debe permitir unas buenas condiciones de evaporación. De este modo, los pesticidas tendrán menos tiempo para descomponerse en compuestos tóxicos al entrar en contacto con las plantas. Las decisiones sobre la fumigación en estos casos se convierten en un reto, ya que las altas temperaturas hacen que las plantas sean más vulnerables a las plagas y enfermedades. Sus sistemas de defensa naturales se descomponen y se vuelven más susceptibles a plagas y enfermedades como los hongos y los insectos. Por lo tanto, los fumigadores deben elegir cuidadosamente el momento de la fumigación para proteger las plantas en tales condiciones climáticas.

Una mejor manera de saber lo rápido que se evaporan las gotas de pesticida es el indicador Delta T. Delta T es la diferencia entre las temperaturas de bulbo húmedo y seco, que puede calcularse combinando el efecto de la temperatura y la humedad relativa.

Delta T y condiciones de aplicación preferentes

Los agricultores también deben prestarle atención al fenómeno de la inversión. La inversión se produce cuando la temperatura aumenta con la distancia al suelo. En este caso debe evitarse la fumigación, ya que el riesgo de deriva de los plaguicidas a grandes distancias es elevado. El riesgo de inversión suele ser mayor desde el atardecer hasta unas horas después de la puesta de sol y es débil al amanecer.

La lluvia puede tener un efecto significativo en la eficacia de los pesticidas. Se ha demostrado que la lluvia reduce el lavado de los pesticidas en algunos casos y aumenta el lavado de los pesticidas en otros. La función principal de los pesticidas sistémicos es ser absorbidos por las raíces, pero la lluvia tiene que ser relativamente ligera para que esto ocurra sin el efecto de lavar el material activo de los alrededores de la planta. En general, la planta absorberá la mayor parte de la solución de pesticida sistémico en unas 2-4 horas. Por lo tanto, es fundamental saber cuánto tiempo hay que fumigar antes de que empiece a llover para obtener un nivel de control aceptable. En el caso de los pesticidas de contacto, las lluvias pueden lavar el ingrediente activo y dañar el efecto protector y curativo que se pretendía.

Los pesticidas pueden aplicarse en forma de líquido, polvo o gas. El pesticida utilizado depende del cultivo y de la plaga que se quiera controlar. El método de aplicación debe añadirse al conjunto de consideraciones cuando se tienen en cuenta las condiciones meteorológicas. Por ejemplo, los herbicidas pueden evaporarse a mayor velocidad cuando se pulverizan a altas temperaturas, mientras que los fungicidas pueden congelarse a bajas temperaturas.

En general, el mejor momento para fumigar es a primera hora de la mañana o al final de la tarde, cuando hay poco viento y la temperatura es fresca. En el caso del insecticida, es preferible la noche, ya que se minimizan las interferencias con las abejas.

Cómo la tecnología puede ayudarle a programar la fumigación

Gracias a la constante monitorización y previsión meteorológica hiperlocal podemos mostrarle las mejores oportunidades de fumigación en la app Agrio. Le ahorramos tiempo y le presentamos esta información cuando decida una fumigación. Además, nuestras previsiones meteorológicas se actualizan cada hora, por lo que puedes estar al día cuando las previsiones cambian.

Programación de la intervención. Rojo – no fumigar |
Amarillo – Las condiciones de fumigación no son óptimas | Verde – Buenas condiciones para la fumigación

Una vez planificada la estrategia de fumigación, le ayudamos a llevar un registro y le enviamos recordatorios a su debido tiempo.

Seguimiento de las intervenciones del campo

El uso de las predicciones climáticas para optimizar los tiempos de tratamiento es una herramienta esencial que le ayudará a optimizar el control de plagas y enfermedades en sus campos. Esperamos ver cómo aprovecha esta tecnología para una gestión inteligente y eficaz de las plagas en su campo.

Mientras tanto, como siempre, le deseamos una cosecha abundante.Mientras tanto, como siempre, le deseamos una cosecha abundante.


Herramienta de Colaboración para la Protección Eficaz de las Plantas

Presentamos un nuevo conjunto de funciones para ayudarles a los equipos a gestionar la protección de las plantas en sus campos. Los agricultores y los asesores de cultivos ahora podrán aumentar su colaboración y comunicación entre ellos.

Los agricultores y los asesores de cultivos comparten el objetivo de maximizar el rendimiento de las cosechas. Tienen que trabajar juntos para asegurarse de que todas las intervenciones estén coordinadas, y ahí es donde las herramientas digitales resultan ser útiles. Los agricultores pueden utilizar sus dispositivos móviles para acceder a la información de la nube, mientras que los asesores de cultivos pueden utilizar estos datos, así como los conocimientos locales, para tomar notas para futuras intervenciones. La función de sincronización instantánea garantiza que los cambios realizados por una persona se actualizarán en todos los demás dispositivos en tiempo real.


En el pasado, la colaboración sólo era posible en los grupos de trabajo agrario, destinado a grandes grupos de productores, como las cooperativas agrícolas. Hoy hemos hecho posible que los usuarios de Agrio colaboren en un solo campo. Los agricultores y los asesores de cultivos pueden ahora examinar las perspectivas de la teledetección, las alertas y la información recogida durante el proceso de inspección. Además, ahora pueden asignarse mutuamente tareas relacionadas con la protección de las plantas y coordinar las intervenciones de forma sencilla.

Los miembros del equipo reciben una notificación cuando están listos los escaneos por satélite, las sugerencias preventivas y otras recomendaciones. Los miembros pueden examinar y analizar juntos estas aportaciones y revisar los lugares de los campos que requieren atención. Las tareas de exploración pueden asignarse a los miembros del grupo. Los miembros son notificados de nuevo una vez que los campos han sido explorados y las observaciones se han cargado en el sistema.

En el campo, los inspectores crean informes digitales de exploración geoetiquetados. Los miembros del equipo pueden ver las observaciones recopiladas, obtener información actualizada sobre las partes de los campos que fueron inspeccionadas por otros miembros del equipo y como resultado, planificar la ruta de exploración. Las discusiones sobre las intervenciones necesarias son cada vez más fáciles dentro de los grupos.

Los miembros del equipo pueden definir tareas, como la comprobación de colectores, y ser notificados una vez que otros miembros hayan completado las tareas. Las aplicaciones de pesticidas, la fertilización, las operaciones de riego y otras intervenciones pueden registrarse fácilmente utilizando el calendario de campo. Utilizamos esta información para enviarle recordatorios y avisarle cuando tengamos información sobre qué intervenciones han funcionado mejor. Utilice esta herramienta para crear experimentos con diferentes intervenciones y supervisar su progreso.


Creemos que la colaboración y la comunicación son importantes para una adecuada protección de las plantas. Nos entusiasma ofrecerles a los agricultores y a los inspectores de campo esta nueva capacidad y esperamos progresar juntos en el campo de la agricultura.


Growing degree days and pest management optimization

With integrated pest management (IPM), monitoring crops and correctly identifying pests demands well-trained experts. The decision to choose one treatment over another is based on a set of factors that include the pest’s identity, the size of the pest population, the pest maturity stage, and the environment. If treatment is to be applied, it should be scheduled to make the most economic sense. Whether you are an agronomist, farmer, or gardener, tracking the growing degree days (GDD) can take your plant protection skills to a whole new level. Luckily this operation that is considered cumbersome, and requires phenology modeling understanding, is becoming very simple with technology.

GDD is a measure used to calculate the amount of heat required for the development of organisms (such as insects) in each stage of their growth. GDD is used to predict insects’ migration, egg hatching, fungal spore development, sexual maturity, and more. Operations that aim to reduce the population density of a pest need to coincide with the high presence of the most susceptible life stage of the species in the field. With insects, GDD can help us time the vulnerable stages of certain insects, such as the hatching of eggs of a particular pest. Compared with using the calendar method to estimate the organism stage, GDD is a more accurate method.

Each organism may require a different amount of accumulated heat to develop from one life stage to another. Phenology models are being developed and tested in laboratories and field experiments to provide accurate life cycle predictions. However, such procedures are expensive to conduct, and therefore the phenology models of many organisms are not readily available. Large-scale observations made by growers worldwide and reported on the Agrio platform is an easy way that allows the development and update of such models.

Combining a weather forecast with a rigid phonology model brings a new level of sophistication to pests, diseases, and weeds management.

Development thresholds

Phonology models predict the effect of temperature on the growth and development of biological organisms. Experiments show that there is a range of temperatures in which development is possible. The lower and upper developmental thresholds are usually used. When the temperature is below the lower developmental threshold, the organism is not expected to develop further. The upper developmental threshold is generally regarded as the temperature at which the growth rate starts to decrease. Both the lower and upper thresholds are determined through experiments and are unique to a specific organism.


The accumulation of growing degree days starts at the biofix (biological fix) date. The biofix can be a biological event or a calendar date that makes the organism’s survival possible. In case of a biological event, growers are required to scout their fields to time the event’s occurrence. In some cases traps installation and frequent examinations of the traps are needed to set the biofix accurately.

In many situations, the biofix is set based on the development stage of the plant. Satellite monitoring and weather models help us to forecast the plant stages for you. We send detailed information regarding scouting recommendations in every stage of the growth.

Area-wide Integrated Pest Management

Once precise methods are followed to decide on treatment schedules, there are vast options that become possible. One of the exciting possibilities is the alignment of treatment schedules in different farms and gardens. Communities of growers can consider the practice of Area-wide integrated pest management, which is the paradigm in which pest control decisions and timing are coordinated in many fields occupying a wide area. This approach is especially effective for mobile pests as it provides better control of pests in wide areas by eliminating the pest migration between fields.

Easy weather analysis and treatment optimization

Agrio makes precise hyper-local weather forecasts easily available to all growers. These state-of-the-art weather prediction models provide our growers an hourly hyper-local weather forecast designated specifically to their unique area anywhere in the world; the forecast is provided at a 3km resolution, so it is specific to their fields and gardens.

We help growers abandon cumbersome excel sheets and instead rely on our algorithms to do the GDD tracking for them.  We compute the accumulation of the growing degree days based on hourly temperatures instead of the more common practice of averaging the day low and high temperatures. This guarantees more accurate results. We manage the entire process for the grower in the following way:

  • The home screen’s daily briefing instructs growers on the required scouting operations and interventions in their fields. These are updated in real-time with the progress of the growing degree days accumulation, observations in the field made by the grower, and observations made by the community members in relevant proximity.
  • Agrio instructs growers when and how to set the biofixes promptly. We provide elaborate information on trap installation and maintenance as well.
  • Agrio tracks GDD according to multiple phonology models that correspond to different pests, diseases, and weeds in different fields or gardens that a grower manages.
  • We use big-data to optimize our predictions and offer phenology models particular to the different locations. We validate our phenology models continuously and adjust them when and where it is needed.
  • We coordinate area-wide integrated pest management operations and present users with the optimal IPM treatment on time.

The codling moth example

To demonstrate how this technology can help growers, we want to discuss the tracking of growing degree days for a specific example. We will discuss the management of the codling moth in apple orchards.

Codling moth larvae are one of the most destructive pests. Although it can attack various fruits, it mainly damages apples. This is the main pest of apples and needs to be managed in each orchard.


To monitor the presence of adults in the orchard, growers need to install pheromone traps. The trap’s purpose is to attract male moths, and they should be installed before the pink stage of apple bud development. The trap’s inner surface is coated with a sticky material to hold insects when they fall into the trap. Traps should be checked by growers every day, and the trapped moths should be counted in each area separately. A total of five moths captured in the trap is the threshold to set the biofix; this is the day on which growing degree days will start to be tracked by the app. The accumulation of growing degree days is used to predict when egg hatching will occur and when pesticide application will be most effective.

Before the pink stage of the apple buds development, Agrio notifies growers that pheromone traps should be installed. The information page provides all the required instructions for the installation. In addition, the information page instructs the grower what requirements need to be satisfied to set the biofix.

Daily briefing screen
Daily briefing screen
Biofix requirements
Biofix requirements
Treatment instructions
Treatment instructions

Once the biofix was set, Agrio starts to track the GDD and shows an estimation of the time until the next spraying is due; growers should stay tuned and follow the instructions in the daily briefing section on the app. Notifications are sent as a reminder when important events are near. Growers can use our image identification capabilities if help is needed with the trap analysis, as precise identification of the moth can be challenging. The aim is to spray when the eggs are hatching; this is when growers will be notified with information on the required intervention.

The colorado potato beetle example

Colorado potato beetle | weather-smart treatment plan
Colorado potato beetle | weather-smart treatment plan

The colorado potato beetle is a pest that can destroy the potato, eggplant, and pepper crops. If it is not controlled, the beetle will reproduce rapidly and cause damage to the plants. The life-cycle of the potato beetle can be predicted by using a weather-based model. It is important to know the vulnerable period of the pest in order to determine when it is time to spray. This can help in controlling the pest population and reducing pesticide use. The life-cycle of this pest can be predicted by using weather-based models. This model predicts the optimal time to apply pesticide treatments.

Female adults produce hundreds of eggs each year. The eggs are usually bright yellow to orange and typically found in clusters of ten to thirty, on the underside of leaves. The model estimates when frequent scouting needs to be started in order to find signs of the eggs’ presence. Growers are notified and asked to confirm the eggs’ presence in order to start the life-cycle tracking.

The larvae should hatch from the eggs in 4-9 days depending upon the temperature of the air. After this, they will molt 3 times before they pupate. These immature phases are called instars, and there are a total of 4. Biological treatment is effective against the first-stage larvae, and chemical spraying should be timed to the emergence of later stages. The number of pest generations in one season is also weather-dependent, and the model will estimate it for you, too.


We are adding new crops and new pest models on a regular basis. Please write to us and tell us which pests you want us to prioritize.

Monitoring GDD helps eliminate the guesswork in determining the time required for control measures. We look forward to seeing you leverage this technology for smart and effective pest management in your field. 

In the meantime, as always, we wish you an abundant harvest.


Pronóstico del tiempo hiperlocal para mejorar la agricultura

Desde la siembra hasta la cosecha, el clima es uno de los factores clave para obtener un buen rendimiento. El pronóstico del tiempo es una herramienta fundamental para los agricultores que quieren asegurar cosechas sanas y productivas.

Las condiciones climáticas afectan a los cultivos desde la semilla hasta el fruto y deberían influir en las decisiones que los agricultores toman en el campo para maximizar la calidad y el rendimiento. La irrigación, la gestión de plagas y enfermedades, y otros aspectos pueden optimizarse si se planifican adecuadamente. Las condiciones climáticas también pueden determinar cómo y cuándo se puede realizar el trabajo de campo, y cuándo puede cambiar (o incluso impedir) la cosecha.

En este artículo, vamos a examinar las importantes consideraciones climáticas durante la temporada de cultivo y describiremos cómo los avances tecnológicos les permiten a los agricultores obtener planes de previsión meteorológica y mantenerse al día con las predicciones meteorológicas como nunca antes.

Consideraciones sobre la temperatura para la plantación y la cosecha

El desarrollo de las plantas está fuertemente influenciado por la exposición a la temperatura ambiente. En general, los días más cálidos adelantan el crecimiento de las plantas, mientras que los días más fríos frenan el crecimiento. Los grados acumulados por encima de un umbral (la temperatura de base) se denominan días de grados de crecimiento (GDD). Esto se utiliza para estimar el crecimiento de ciertas plantas durante la temporada de crecimiento. El método se considera una estimación más precisa de la etapa de crecimiento de las plantas en comparación con la edad de las mismas. El seguimiento de los GDD puede ayudar a los agricultores a decidir el momento de la fertilización y la cosecha.

Por otro lado, en algunas plantas, la liberación del letargo invernal depende de tener un número suficiente de horas de frío acumuladas, como en las manzanas o las uvas. Si la temperatura no baja lo suficiente, la liberación del letargo y la subsiguiente floración de la planta puede ser débil y desigual. En ausencia de condiciones óptimas, el agricultor necesita aplicar productos químicos para “despertar” las plantas e inducir una floración uniforme.

Al sembrar, es necesario abordar varias interrogantes. ¿Ha habido suficiente acumulación de agua en el suelo para que las semillas broten y se desarrollen? ¿Los días siguientes a la siembra van a tener suficiente luz solar? ¿Existe peligro de heladas? Además, en ciertos cultivos, la temperatura en el momento de la cosecha es importante. Por ejemplo, el contenido de azúcar y la composición de las uvas de vino es más estable a temperaturas más bajas, por lo que las uvas se cosechan a menudo en momentos más frescos del día.

La previsión climática precisa a largo y corto plazo es una herramienta crucial para los cultivadores cuando es necesario planificar de antemano el momento de la plantación y la cosecha.

Planificación de riego

Una vez que el campo está sembrado, el pronóstico del tiempo ayuda a los agricultores a optimizar las condiciones de crecimiento. La predicción del tiempo puede ayudar a planificar programas de irrigación eficientes que ahorren agua y reduzcan la dependencia de la irrigación. Conocer los días cálidos y secos puede anticiparse con antelación para permitir un riego eficaz que evite el estrés de las plantas. Otros factores como la temperatura, la humedad, la intensidad de la luz solar y el viento son importantes. Además, la pérdida de agua por la evaporación de las plantas y el suelo (conocida como evapotranspiración) se ve afectada por la velocidad del viento. La gran cantidad de variables que pueden cambiar, y la alta frecuencia de su cambio, hace que la planificación de programas de riego eficientes sea compleja. El seguimiento de la lluvia y la evapotranspiración mediante la ayuda de la tecnología proporciona una forma fácil y práctica de elaborar planes de riego precisos que se actualizan continuamente a medida que cambian las condiciones climáticas.

Manejo de plagas y enfermedades

No solamente las condiciones climáticas determinan el comportamiento y desarrollo de las plantas, sino que las condiciones climáticas también influyen fuertemente en la aparición y desarrollo de plagas y enfermedades como la migración de insectos, la eclosión de huevos, el desarrollo de esporas de hongos, la madurez sexual, etc.

La combinación del pronóstico del tiempo con el conocimiento de la evolución de plagas o enfermedades específicas aporta un nuevo nivel de sofisticación al control de plagas y enfermedades. Las predicciones del tiempo y la GDD se utilizan para saber cuándo es probable que se produzca la aparición de la plaga. Los agricultores saben entonces cuándo buscar las plagas y cómo programar de forma óptima la aplicación de las medidas preventivas y los plaguicidas. Por ejemplo, las polillas adultas del barrenador europeo del maíz suelen empezar a aparecer y a aparearse alrededor de la primavera, cuando el clima empieza a calentarse. Los huevos se ponen en la parte inferior de las plantas hospederas, y en varios días, eclosionan como larvas y comienzan a alimentarse. Al calcular el GDD, un agricultor puede predecir la aparición de la polilla y las medidas preventivas que pueden aplicarse cuando la plaga es más vulnerable (y antes de que se haya producido el daño).

La planificación inteligente basada en el clima también puede evitar las aplicaciones inútiles de pesticidas y fertilizantes. Un pesticida o fertilizante químico aplicado justo antes de la lluvia puede ser arrastrado y tendrá poco o ningún efecto. Las aplicaciones de plaguicidas en días ventosos también son situaciones que deben evitarse, ya que el viento puede tener un efecto adverso en la dispersión de los plaguicidas e incluso puede causar daños en los campos cercanos debido a la deriva. La pulverización debe evitarse cuando la velocidad del viento es superior a 15 km/h.

También debe tenerse en cuenta la temperatura al decidir cuándo se debe rociar, debido a varios factores, como la posibilidad de evaporación de las gotas, el riesgo de fitotoxicidad y otros. En general, debe evitarse la pulverización de plaguicidas si las temperaturas son superiores a 30 grados centígrados.

La humedad relativa del aire es otro factor importante que influye en la evaporación de las gotas. La pulverización debe evitarse cuando la humedad es baja.

Conocer los días adecuados para aplicar los plaguicidas y los fertilizantes puede marcar la diferencia entre un campo saludable y uno no saludable.

Pronóstico del tiempo

Los agricultores utilizan varios métodos para el pronóstico del tiempo. Entre ellos se encuentran las grandes estaciones meteorológicas regionales, que se basan en una gran cantidad de información y proporcionan información detallada y de baja resolución a las estaciones climáticas in situ, que son más precisas en cuanto a la zona, pero que son relativamente caras y requieren instalación y mantenimiento.

Mejores y más rápidas computadoras y herramientas de medición más exactas han hecho que el modelado meteorológico sea más preciso y el pronóstico del tiempo más confiable que nunca antes. Las observaciones como la temperatura, la humedad y las características del viento son recopiladas de diferentes fuentes como las estaciones meteorológicas, los radares meteorológicos y las aeronaves, que luego se introducen en las computadoras para producir simulaciones de previsiones meteorológicas. Cuanto más precisa y abundante sea la información, más precisos y localizados serán los pronósticos. La creciente potencia de las computadoras permite un frecuente refinamiento de los pronósticos que da como resultado predicciones de alta resolución en el espacio y el tiempo.

Esos adelantos tecnológicos les permiten a los agricultores hacer pronósticos de alta resolución de manera asequible, incluso en las zonas rurales de los países de bajos ingresos que no tienen acceso a dispositivos de medición del tiempo o a estaciones meteorológicas locales asequibles. Estos nuevos métodos son importantes porque pueden predecir el microclima a nivel de campo, permitiéndoles a los agricultores, prepararse y planificar con anticipación.

Agrio le ayuda a planear con anticipación

La combinación de los pronósticos del tiempo y los conocimientos agrícolas puede tener resultados poderosos. Agrio hace que los pronósticos del tiempo precisos e hiperlocales estén fácilmente disponibles para todos los agricultores. Nuestros modelos de predicción combinan medidas meteorológicas y observaciones de diferentes fuentes. Estos modelos de predicción del tiempo de última generación proporcionan a nuestros agricultores una previsión meteorológica hiperlocal cada hora designada específicamente para su zona única en cualquier parte del mundo; la previsión se proporciona con una resolución de 3 km, por lo que es específica para sus campos.

precise, hyper-local weather forecasts easily available to all growers

Aprovechando los avances tecnológicos, ayudamos a los agricultores a que se olviden de las incómodas hojas de Excel y en su lugar puedan confiar en nuestros algoritmos para hacer el seguimiento de las mismas.

Agrio proporciona varias características específicas que les permiten a los agricultores:
Optimizar los tiempos de pulverización para la seguridad y la eficiencia
Rastrear la GDD para la optimización del manejo de plagas y enfermedades

Esto le permite a los agricultores planificar una temporada de cultivo y un programa de riego eficientes, ahorrar dinero y cultivar plantas más fuertes y saludables. Esperamos verlos aprovechando esta tecnología para intervenciones climáticas inteligentes y efectivas en su campo.

Mientras tanto, como siempre, les deseamos una cosecha abundante.


2 Big Reasons to Implement Crop Rotation in Your Next Growing Season

Crop rotation is the practice of growing different crops in a sequence on the same field and it has been used as an important tool to improve farming since the early days of agriculture. In this practice, each crop serves a different purpose in the order of rotation. The crops are categorized into two main groups: Feeder crops and cover crops. Feeder crops deplete the soil nutrients, whereas cover crops are used to restore the soil, green manure, and prevention of erosion. 

The main benefits of crop rotation are disease and pest management and preservation and restoration of soil health. Though, there are additional benefits such as reduced reliance on chemicals and cattle grazing that will not be discussed in this scope.

Feeder crops

Chenopodiaceae (e.g. spinach, beetroot)
Brassicas (e.g. broccoli, cabbage)
Cucurbits (e.g. cucumber, melon)
Solanaceae (e.g. tomato, potato)
Alliums (e.g. onion, leek)

Cover crops

Legumes (e.g. alfalfa, beans)
Grasses (e.g. sorghum, oats)

Beetroot is an example of a feeder crop
Beetroot is an example of a feeder crop

Managing Pests and Diseases with Crop Rotation

Pests and diseases are one of the biggest challenges to growers worldwide. The good news is that crop rotation can help combat pests and diseases by interrupting life cycles and altering pest habitats.

The spread of pests and diseases can be inhibited by understanding their life cycle. Fungi, bacteria, insects, nematodes, and even viruses have specific hosts that can be removed and habitats that can be made less favorable to them. This can help disrupt and reduce the population of pests and diseases. 

For example, if a potato field has a Colorado Potato Beetle infestation, alfalfa can be planted in the following season to reduce pest pressure. What would planting alfalfa in this case achieve? Well, during the growing phase, the beetle will lay its eggs in the field. The eggs would hatch in alfalfa plants, which are not viable hosts for the beetle. This means that the larvae population will be greatly reduced because of its lack of mobility (in the larvae stage the pest doesn’t have wings). By altering the beetle’s habitat, and interrupting its life cycle, prevention of a buildup of the beetle’s population for the next planting season is achieved.

If the grower were to grow potatoes in neighboring fields, it would reduce the effectiveness of using alfalfa for crop rotation because the potatoes would act as a temporary host for the beetle. Beetles can migrate back to the main field the following season when the potato crop is planted again. 

While the alfalfa is grown in the field as a cover crop, weeds from the solanaceous family (such as nightshade) may host the beetle. Thus, weeds can also function as potential transitional hosts and act as temporary hosts for the beetle. Such challenges among others can hinder the effectiveness of crop rotation.

Growers can achieve higher yields by having a good understanding of the biology of pests and diseases. Does the pest or disease have a wide or short range of hosts? How long can the pest or disease survive without a host? How mobile is it? These and other questions need to be addressed when planning crop rotation for pest and disease management. Additionally, by relying less on conventional chemicals for pest management, there is less chance of the pests and diseases developing resistance which leads to a higher success rate of eradicating the problem. 

The colorado potato beetle
The colorado potato beetle

Preserving and Building Soil Quality

While crop rotation implications on plant protection is an important consideration for its own sake, growers need to pay attention to soil quality. Years and years of intensive single-crop farming can exhaust the soil, deplete its nutrients and damage the microorganism ecology. This can reduce yields, increase the need for fertilizers, and increase soil pathogens that damage the plants. How can crop rotation help build good soil health?

Some crops are known to be beneficial for soil health; these are known as cover crops. Cover crops promote soil health and structure, return nutrients to the soil, and contribute to the soil ecology. 

Potato is an example of an exhaustive crop, which means that soil’s nutrients can be depleted after growing potatoes consecutively. Growers can prevent exhaustive crops from depleting soil by planting cover crops. In this case a legume such as alfalfa.

Why legumes? Legumes are known to be restorative crops. Legumes have symbiotic bacteria in their root system that capture atmospheric nitrogen and return it to the soil in a form that is available to the plant. Legumes also have a deep taproot which is used to recycle nutrients that are deeper in the ground. 

Grasses can be used as cover crops as well. Grasses have wide fibrous root systems that secrete substances into the soil and promote soil aggregation. This process stabilizes the soil and improves aeration. Their roots also decompose slowly and act as a source of slow-releasing nutrition.

What makes cover crops even more interesting is the fact that they can be used as green manure. At the end of the season cover crops can be cut up or left to decompose in the soil. Doing so adds rich organic substance to the soil and promotes soil health. However, the usage of green manure should be planned carefully as the decomposing plant material may be a source of inoculation and the spread of pathogens.

Using legumes, grass or even leaving the soil fallow for some period can greatly benefit soil health. It can return nutrients, promote soil microorganisms, and better the soil structure.

Planning out a crop rotation

Poor yield, heavy fertilizer reliance, and high pest and disease pressure should incentivize growers to make plans for crop rotation.

Planning of the crop rotation can be divided into several steps:

  1. Deciding which cover crops are available to be used based on location and climate, local market trends, and the season of the available field.
  1. Deciding when to plant the cover crops. Ask yourself how often you can afford to rotate and what type of rotation. Are you going to plant only in the off-season, or have several consecutive seasons of cover crops?
  1. Deciding which cover crops to use: legumes or grasses. Both legumes and grass have relatively low nutrient demands and can be used as green manure. Other considerations that should be taken into account include their main benefits:

Legume benefits:

  • Able to capture atmospheric nitrogen(N)
  • Recycles nutrients from deeper soil

Grass benefits:

  • Promotes soil aggregation and aeration
  • Acts as a source for the slow release of organic material
Alfalfa fixes nitrogen in the soil
Alfalfa fixes nitrogen in the soil

What Else?

The root systems of cover crops hold the soil together and stabilize its structure which prevents strong rain and storms from causing soil erosion. Cover crops promote a diverse field that can combat weeds and might even suppress weed growth. In addition, rotating with a crop allows for easy weed control and gives growers an opportunity to reduce the build-up of weeds.

When used correctly, crop rotation can be an effective and powerful tool to add to crop management. Its benefits can be wide and long-lasting for managing pests and diseases by interrupting life cycles and altering habitats, preserving and promoting soil health and stability, and enriching the microorganism ecology of the soil.

We can help growers to be better, greener, and more effective. 

  • Our platform helps growers keep records of the crops in their fields.
  • Our database can help growers plan a crop rotation by providing a historical account of pests and diseases in the region.
  • Our resource library provides detailed information on the life cycle and range of hosts for pests and diseases in accordance with specific crops and locations.
  • Our system generates end-of-season crop cover recommendations.

We are looking forward to seeing you apply this information to build a smart, effective crop rotation in your field. In the meantime, as always, we wish you an abundant harvest.


Mapeo Remoto del Contenido de Clorofila

La capacidad de monitorear el progreso de los cultivos y detectar problemas en el campo antes de que los síntomas sean evidentes es crucial para una cosecha exitosa. En este artículo, queremos discutir cómo el mapeo de la variabilidad espacial del Contenido de Clorofila Foliar (LCC, por sus siglas en inglés) dentro de los campos puede ayudar a detectar problemas de salud y diferentes cantidades de aplicación de fertilizantes nitrogenados.

El Contenido de Clorofila Foliar es un indicador importante de la salud de las plantas, el potencial fotosintético y el estado nutricional. Aunque el análisis de extracción por muestreo de campo proporciona una estimación precisa del estado de Contenido de Clorofila Foliar, dichos métodos no son prácticos. La medición de teledetección no destructiva ofrece una forma asequible y frecuente de evaluar el Contenido de Clorofila Foliar de plantas sobre campos en alta resolución.

El contenido de nitrógeno foliar está fuertemente correlacionado con el contenido de clorofila. La velocidad óptima y el tiempo de aplicación del fertilizante nitrogenado es crucial para lograr un alto rendimiento. La monitorización del índice de clorofila permite la aplicación de fertilizantes de tasa variable y la gestión de cultivos específicos del lugar.

¿Por qué el Índice de Vegetación de Diferencia Normalizada (NDVI, por sus siglas en inglés) no es adecuado para esta tarea? El NDVI muestra una baja correlación con el contenido de clorofila, es más grave en etapas avanzadas de crecimiento cuando el NDVI se satura. Esta saturación se debe al aumento en el área foliar y la densidad de la estructura del dosel. En tal etapa, existe la necesidad de monitorear un índice que esté altamente correlacionado con el contenido de clorofila foliar y menos sensible a la estructura de la hoja y el dosel.

Los agricultores que utilizan Agrio pueden monitorear el índice de clorofila de sus campos de manera directa. Todo lo que se necesita es definir la ubicación del campo dibujando un polígono que represente el contorno del campo. Una vez hecho esto, estamos haciendo un seguimiento constante para usted y notificarle cuando un nuevo análisis esté disponible.


Esperamos que un escaneo esté disponible cada pocos días, pero cuando el cielo está nublado, no es posible una toma clara del campo, y tenemos que esperar la próxima vez que el satélite pase por encima de su campo.

Problemas de cultivos identificados temprano para evitar pérdidas

Hacemos el análisis de imágenes y te avisamos cuando encontramos anomalías.

Dé un gran salto adelante en sus prácticas agrícolas al comprometerse con la tecnología de teledetección Agrio. Estamos deseando ayudarte con eso.

Mientras tanto, como siempre, les deseamos una cosecha abundante.


Monitoreo de campos agrícolas con satélites

La habilidad de monitorear procesos en los cultivos y problemas por manchones en el campo antes de que los síntomas aparezcan es crucial para una cosecha satisfactoria. El avance en la tecnología nos permite capturar imágenes de granjas alrededor del mundo con la ayuda de satélites.

El índice más popular de vegetación que usan los agricultores es NDVI, este es un indicador de la sanidad de las plantas basada en la reflexión  de las diferentes longitudes de onda de luz.

Los agricultores que usan Agrio, pueden monitorear los índices NDVI de sus campos en una forma muy simple. Todo lo que se necesita es definir la ubicación del campo dibujando un polígono que representa el perímetro del predio. Una vez hecho esto, nosotros estamos dentro y hacemos monitoreo constante para ti. Nosotros te notificamos  cuando un nuevo escaneo está disponible para ti. Esperamos que un escaneo esté disponible cada 5 días, pero cuando el cielo está nublado nosotros no disponemos de imágenes claras de el campo hasta que el satélite pase nuevamente por el predio. 

Los usuarios de Agrio pueden esperar a recibir las siguientes imágenes:


Nosotros hacemos el análisis y alertamos cuando encontramos alguna anomalía. Pero tú también puedes analizar datos por ti mismo. Como se observa en la figura anterior, regiones en las cuales la vegetación es baja con respecto a otras partes en el predio, pueden indicar que existe un problema, y revisar si es necesario en esta área específicamente. En esta situación tú puedes recorrer el campo y usar la aplicación Agrio para cargar imágenes que tu vampires con tu celular (smartphone). Esto nos ayudará a darte recomendaciones más precisas y también a mejorar nuestras capacidades para identificar problemas correctamente de las imágenes satelitales a medida que avanzamos.

El NDVI también nos permite estimar si el cultivo se encuentra desarrollándose en una buena fase. Si el índice es bajo a la mitad de la temporada, probablemente exista un problema que debe ser investigado, como deficiencias nutrimentales por ejemplo.

Toma un gran salto hacia adelante en tus prácticas agrícolas comprometiéndote con la tecnología sensible de Agrio. Nosotros estamos buscando ayudarte a salir adelante con esto.

Mientras tanto, como siempre, te deseamos una cosecha abundante.


Artificial Intelligence for Integrated Pest Management

Modern plant protection practices implemented in well-supported farms result in considerable yield gains. Unfortunately, such practices are not widely adopted and are still challenging to enact because farmers lack the required support and knowledge. Integrated pest management (IPM) is the approach of combining methods that work better together than separately. It allows diseases and pests to be controlled by managing the ecosystem, which results in long-term pest control that is less risky to farmers and the environment. IPM is an environmentally sound approach that has been shown to reduce pesticide use by 80% or more compared with conventional pest control approaches. With IPM, monitoring crops and correctly identifying pests demands well-trained experts. The decision to choose one treatment over another is based on a set of factors that include the identity of the pest, the number of crops affected, and the environment. If treatment is to be applied it should be scheduled to the timing that makes the most economical sense. Agrio is an artificial intelligence-based integrated pest management tool that helps to close the gap in farmer-received support. Agrio facilitates modern plant protection adaptation and is easy to use, affordable, and scalable. We simplify integrated pest management implementation by providing the following benefits to our users:

Easy method for scouting fields and sharing findings with coworkers

We offer a typing-free reporting system to provide accurate descriptions of pest and disease pressure in fields. The digital reports are automatically augmented with insights derived by our artificial intelligence algorithms. During the scouting process, location-based tasks are shared with coworkers to make the treatment procedure more efficient and precise.

Artificial intelligence-based integrated pest management tool for farming organizations

Addressing challenges in diagnosis for optimal treatment

Farmers and inspectors can find it challenging to identify the correct pathogens, as well as to decide the economical threshold that requires a treatment program. Our solution enables users to rely on well-trained artificial intelligence algorithms to identify problems with their crops and decide on treatment necessities. If treatment is deemed required, the options are numerous and there is no effective way to follow a protocol that is with the lowest environmental and economic risk. Our decision support system enables farmers and inspectors to follow a consistent scientific regime that optimizes the pest management process.

Predicting problems early

Timing is crucial when it comes to protecting crops and an effective IPM program could benefit from farmers knowing what to expect before it infects their fields. Prevention is most often the best treatment option. In more extreme epidemics, organizations are left unprepared when a pest or a disease invades a new territory. Agrio monitors global spread and provides users with pest and disease alerts that allow them to minimize surprises during growing seasons.

Supervising large-scale operations

IPM programs take into account numerous observations made by inspectors. By deploying their observations in real-time, and facilitating communication between coworkers, our solution considerably reduces the management resources that are required to brief inspectors, coordinate plant protection operations, and monitor the progress of outbreaks.

We developed Workgroup in order to help farming groups overcome the above challenges. Workgroup is an artificial intelligence-based integrated pest management tool for farming organizations; it is an internal operations tool for managing large-scale crop protection endeavors.  Workgroup is customizable and buildable; the protocols and agriculture inputs can be predetermined and displayed to users within their secure channel. Organized data from the Workgroup is displayed in a dashboard for the luxury of crop protection supervision from the office or home. The dashboard arranges information for supervisors who want more thorough management of the crop protection activities within their organizations. Workgroup allows farming organizations to manage plant protection activities on a large scale.